
Plankalkül

Bram Bruines (0213837)

January 8, 2010

1

Contents

1 Introduction 3

2 Plankalkül 3
2.1 Plan . 3
2.2 Variables . 4
2.3 Notation . 5
2.4 Datatypes . 5
2.5 Operators . 6
2.6 Predicates . 7
2.7 Listoperators . 8
2.8 Examples . 9

2.8.1 Example 1 . 9
2.8.2 Example 2 . 10
2.8.3 Example 3 . 10

2.9 Omissions . 11

3 Formalization 12
3.1 Boolean Expressions . 13
3.2 Arithmatic Expressions . 14
3.3 List Expressions . 15
3.4 Statements . 16
3.5 Iteration statements . 16

4 Application 19
4.1 Boolean Expressions . 20
4.2 Arithmetic Expressions . 21
4.3 Iteration . 21
4.4 Statements . 22

5 Conclusion 23

6 Bibliography 24

2

1 Introduction

The first modern programmable computers were the British Colossus, the American ENIAC and
the German Z3. Both the ENIAC and the Colossus were built by teams of well-funded engineers,
while the Z3 was built by Konrad Zuse, alone, based on an earlier version he had built in his
parent’s apartment. In 1998, four years after Zuse’s death, a paper from Raúl Rojas demonstrated
how the Z3 could be made Turing-complete. This article generated a renewed interest into many of
Zuse’s projects, most of which had not gotten much public attention. One of these was an obscure
draft on a programming language from 1945.

This programming language called Plankalkül was what Raúl Rojas turned his attention to. In
2000 the Berlin University proudly announced the development of the first implementation of
Plankalkül.1 This has spawned a number of articles on Plankalkül containing introductions or
biographies on Zuse, but little more formal. In some, Plankalkül is compared to Fortran or Algol
60 but only on a very general level. In this paper Plankalkül is examined in a more formal way
in order to determine whether the draft of Plankalkül would have worked and the idea was simply
ahead of its time.

The first draft of Plankalkül from 1945 contains some ambiguous features, but is on the whole
well documented. Based on the draft its features will be explained and compared to modern
programming languages. Then a semantics of Plankalkül will be built up in the style of Nielson &
Nielson (1999). The basic features that make up the language will be described in a formal way in
order to demonstrate that Plankalkül does not differ from modern programming languages apart
from its remarkably early conception.

2 Plankalkül

The ENIAC, Colossus and Z3 were controlled by machine code, which means the program contains
every calculation and operation the computer carries out. The ENIAC had to be rewired for each
new computation, while the Colossus and Z3 could read punched tape containing the program to
be carried out. What makes Plankalkül different, is that it is of a higher level. The program does
not describe every step of every calculation. Instead it allows the programmer to use simple logical
constructs. These are translated by the underling soft- or hardware to step-by-step machine code.
A higher-level language offers a programmer simple building blocks to compose a program.

2.1 Plan

In Plankalkül, a program is composed of one or several blocks, called plans. A plan receives
a number of input values, performs certain operations on them and returns a number of result
values.

1Rojas (2000) , Rojas (2000a)

3

Figure 1: A chain of plans.

As is the modern method, a calculation is broken down into different tasks and for each a plan
is written. The main plan or ’Hauptplan’ is initally executed using the results of different plans,
which can use the results of other plans, and so on. In this way all plans are chained together and
a complete program is made. A plan is free from side-effects and there is no recursion.

2.2 Variables

Variables can not be given an arbitary name, but are referred to as V0, R0 or Z0, depending on
their function. The V variables are used as the input variables for a plan, and are readonly. The Z
variables or ’Zwischenwerte’ are used for intermediary storage within a plan. The results of a plan
are referred to as R values. Every plan is preceded by a ’Randauszug’, which defines the number
of parameters and results as well as their corresponding type.

R(V0, V1) ⇒ (R0, R1)

The above plan has two input values V0 and V1 and returns two result values R0 and R1. In order
to use the result of plan 1.2 as an parameter for plan 1, the following Randauszug can be employed.

R01.2(V0) ⇒ R0

This Randauszug ensures that the result R0 of plan 1.2 is used as a parameter for this plan, which
returns a single variable. In this way plans can be chained together. Naturally the types of all the
variables must be equivalent, otherwise this will not work2.

2Zuse (1945), p. 13-14.

4

2.3 Notation

The strangest aspects of Plankalkül for a modern programmer is likely to be Zuse’s twodimensional
notation. The index of an array is not written after the variable name, but is written immediatly
below the variable name. The type of the variable, which must always be given explicitly, is written
below that. Variables do not have to be declared.

Z Z
V 4 2 Part of the variable name, so here we have Z4 and Z2.
K 2.3 Variable index, we refer to Z4[2.3] and Z2.
S 0 0 The type of Z4[2.3] and Z2, in both cases a single bit.

There is also a way to get the index for a variable from another variable.

The value of the variable Z2 is used as the index for the variable Z1, thus we get Z1[Z2]. While
implementing Plankalkül 2000, a more conventional notation was chosen and the index and type
are written after the variable name.

V0[1:5.0] Variable V0, component 1, of type 5.0
Z1[5.3 :9.0] Variable Z0, component 3 of component 5, of type 9.0
Z2[:12.3.0] Variable Z2, of type 12.3.0

3

In this paper a more conventional notation will be used for convenience. I will omit the type in
examples whenever this is not relevant and shall use subscript to indicate the number and brackets
to indicate the index of a variable, except in blocks of literal code. The variables above for instance
will be written V0[1], Z1[5.3] and Z2.

2.4 Datatypes

The available datatypes in Plankalkül are certainly very low-level. The only primitive datatype is
the bit, from which more advanced datatypes can be constructed. The simplest datatype is 0, a
single bit, called a ’Ja-Nein-Werte’. An array of bits is represented as n x 0 and an array of arrays
of bits can be represented as m x n x 0. We can also create tuples. For instance, (0,0) is a tuple of
two bits and (0,0,0) would be a tuple of three bits.

These same processes can be applied to any already existing datatype. Supposing we have a
datatypes σ and τ we can make a tuple (σ,τ) and an array like m x σ. Ofcourse we can make a
tuple (σ, m x τ) and so on.4

3Rojas (2000), p.12.
4I am ignoring quite a lot of alternative notation concerning types and declarations. In some cases there are two

or three different ways of denoting the same datatype which can in some cases be handy but is mostly confusing. I
shall therefore employ only one clear notation. Syntactical alternatives can be found in Zuse (1945), p.3-4.

5

Z V Z
V 0 1 1
K 1 i
S 0 (σ,σ) 4 x 0

Z0 is a bit. V1 is a tuple of type σ. Z1 is an array of four bits. Zuse devoted much time to describing
the process of finding the right datatypes to represent problems and composing suitable datatypes.
He also gives a few more advanced datatypes.5

� A8 A natural number.

� A9 A whole positive number.

� A10 A whole number (either positive or negative).

� A11 A positive fraction.

� A12 A fraction

� A12 A complex number.

Although the examples Zuse gives are more like scetches than complete definitions, these numbers
can be used like any other datatype.

Z + V ⇒ R
V 0 0 0
K 1
S 12 12 12

For instance we could add two complex numbers and return a complex result as above. So even
though the datatypes are all composed of bits, fairly complex datatypes can be constructed and
used without too much trouble. The lack of characters, and input / output facilities is notable as
those features tend to be added to any implementation fairly quickly.

2.5 Operators

There are a number of very familiar operators in Plankalkül, and some that may appear quite
foreign at first glance. Assignment is perhaps the most basic operation.

10 ⇒ Z0

This statement assigns the value 10 to variable Z0. Needless to say, the type must be given and
must be sufficient to contain the value 10. The next operator is the conditional execution or ’if’.

Z0 →
˙

Statement

5Zuse (1945), p. 120-121.

6

If Z0 evaluates as true the Statement is executed, otherwise it is ignored. An ’if then else’ con-
struction can obviously be constructed easily:

Z0 →
˙

Statement1
Z0 →

˙
Statement2

In Plankalkül, Z0 is true if Z0 is not and thus this is equal to the fragment of ’if (Z0) then State-
ment1; else Statement2;’. Next, there are the looping constructs. The first and most general
loop is simply called ’W’ for ’Wiederhohlung’ or repetition.

W

 Z0→
˙
Statement1

Z1→
˙
Statement2
...

The function of the ’W’ operator is to repeatedly execute any of the statements for which the
precondition evaluates as true, until all preconditions are false, or until the special symbol ’Fin’ is
encountered, which acts as a break. There are six other looping constructs W0 ... W5, which offer
variations on the same operation. They are given one (in the case of W0 to W3) or two (in the case
of W4 and W5) integer variables which are constant. Every loop employs a local variable such as
e or i, which is checked against the constant value.

W0 (V0)

[
Statement1

...

]
The W0 operator simply executes all statements in the following block for a number of times , spec-
ified in the variable V0. This variable can usually be accessed and accessed from within the block6,
and is automatically decreased or increased by one every cycle. When the initial value is zero, the
loop will not run.7 The W1 and W2 operators are used to loop through the components of an array.

W1(n)

[
V0[i] ⇒ R0[i]

...

]
In the example above, the components 0 - n of variable V0 are copied to R0. The difference between
W1 and W2 is that in the former case the variable i counts up from 0 to n and in the latter case
the variable i counts down from n to 0. The constructs W3 and W4 take two integers (n,m) and
respectively count while m≥n and while m≤n. W5 counts up or down while m=n depending on
whether m<n or m>n.

2.6 Predicates

Zuse also describes the possiblity to define plans which act like logical predicates. He mentions the
predicate ’for all’, denoted by (x) R(x) (a more modern notation would be ∀x R(x)). This predicate
could be declared in Plankalkül, but will need to get a domain, or the type of the elements for which
this predicate will hold.

6There is one exception to this rule. That is in fact W0. More details on this choice are given below.
7Zuse (1945), p.27-28.

7

(x) R(x)
V
K
S 8 8

The predicate above would be denoted in a more modern notation as ∀x:ZR(x). A predicate is
presumably, simply a plan which accepts one or more elements of the right type as an argument
and returns a single boolean, representing either true or false. He then combines these predicates
with the concept of a set to define several basic operators of set theory.

x ∈ V1 Test whether x is an element of the set V1
(x)(x ∈ V1 ⇒ R(x)) Test whether the property R(x) holds for every element of the set V1.
(Ex)(x ∈ V1 ⇒ R(x)) Test whether there is an element of the set V1, for which the property R(x) holds.

Zuse goes on to define many different operations which are based on predicates and sets or sequences.
The listoperators of the next section are an example.

2.7 Listoperators

Zuse realized that an array can hold a set or sequence of different values and he designed a number
of operators specificaly for sets or sequences. These operators are common to functional program-
ming languages and are not usually found in imperative languages.

x́(x ∈ V1 ∧ R(x)) Returns the single x from the set V1 for which R(x) holds.
x̂(x ∈ V1 ∧ R(x)) Returns a subset of the set V1 composed of every element for which R(x) holds.
ˆx̂(x ∈ V1 ∧ R(x)) Returns a sequence composed of every element from V1 for which R(x) holds.

The precondition for x́(x ∈ V1 ∧ R(x)) is that there exists such a unique x. The functions above
can easily be translated to a modern functional programming languages such as Haskell:

-- Return the single value from a link for which a property holds

xacute :: Num a => [a] -> (a -> Bool) -> a

xacute (x:xs) f

| length (filter f (x:xs)) == 1 = (head (filter f (x:xs)))

-- Return a subset of a set, composed of every element for which a property holds

xcircum :: Num a => [a] -> (a -> Bool) -> [a]

xcircum [] f = []

xcircum l f = nub (filter f l)

-- Return a sequence composed of every element from a set for which a property holds

xdblcircum :: Num a => [a] -> (a -> Bool) -> [a]

xdblcircum [] f = []

xdblcircum l f = filter f l

There are also two operators which were probably only intended for use in a loop.

µx(x ∈ l ∧ R(x))
λx(x ∈ l ∧ R(x))

8

The first, when used in a loop, returns a new element from an array each cycle of the loop, until
every element has been processed or the loop has terminated in some other way. The latter is used
in a similar way but moves from the end to the front.

-- These functions return either a value, or the symbol Fin

-- we can represent this in Haskell with the following datatype;

data Zuse a = Val a | Fin

-- Mu

mu :: Num a => Int -> [a] -> (a -> Bool) -> Zuse a

mu _ l f

| filter f l == [] = Fin

mu 0 l f = Val (head (filter f l))

mu 0 l f = Val (head (filter f l))

mu n l f

| length(filter f l) > n = Val (head (drop n (filter f l)))

| otherwise = Fin

-- Lambda

lambda :: Num a => Int -> [a] -> (a -> Bool) -> Zuse a

lambda _ l f

| filter f l == [] = Fin

lambda 0 l f = Val (head (reverse(filter f l)))

lambda 0 l f = Val (head (reverse(filter f l)))

lambda n l f

| length(filter f l) > n = Val (head (drop n (reverse(filter f l))))

| otherwise = Fin

Loops are of course not a feature of functional programming languages like Haskell, where recursion
is used instead. The operators µx(x ∈ l ∧ R(x)) and λx(x ∈ l ∧ R(x)) were intended to be used
in loops, where the loop has a local iteration variable. Using this variable as demonstrated, we can
give Haskell functions which are equivalent.

2.8 Examples

I will now give a number of short programs and descriptions of exactly what they are supposed to
do. I hope this will help in familiarizing the reader with the sometimes daunting task of reading
Zuse’s syntax. The second and third examples are taken from Zuse (1945).

2.8.1 Example 1

The first plan, called P1.1, calculates the factorial of a natural number.

9

The first line contains the Randauszug and defines that P1.1 takes one argument, an integer called
V0 and returns an integer called R0. The program then assigns the value ’0’ to R0 and proceeds to
loop as many times as the argument dictates, and adds the value to R0. When the loop finishes,
value R0 contains the n!.

2.8.2 Example 2

The following plan is taken from Zuse8, and is an operation an a list.

As the Randauszug shows, this plan takes an array of elements of type σ and returns a list of the
same type and dimension. The plan then enters into a loop, once for every element in the list. The
elements of the list V0 are then copied into R0, back to front. The result is returned, a reversed
copy of the received list.

2.8.3 Example 3

The last example is a larger plan, also given by Zuse9, but slightly changed in order to conform
to the syntax used in this paper. As the Randauszug shows the plan takes an array of values and
returns an array of the same type and dimension.

8Zuse (1945), p.70
9Zuse (1945), p.73

10

The first operation is to copy V0 into a temporary variable, Z0 because V0 is readonly and cannot
be altered. Then a complicated block is looped one short of once for every element in the array.

Within the loop, the first value is copied into a new temporary variable Z1 and the value of the
variable is copied into a variable e. A new loop is for the remaining elements, wherin elements in
the array switch positions if the latter is greater than the former. Then when all elements have
been dealt with, the very last element is put infront of the array. Finally the sorted list from Z0 is
copied into an output variable R0.

2.9 Omissions

There are a number of features and functions that Zuse describe or merely mentions which fall
beyond the score of this paper. A short list will be given below.

� It is possible to create function templates. Zuse describes the possibility to give a basic
function as an argument to a function. It is thus possible to create a plan which operates on
functions.

� There are many syntactic alternatives which can be very confusing. In each case I have tried
to choose the most intuitive notation and to ignore the other choices.

� Zuse gives more datatypes then the ones I have listed in the section above. Zuse has a
tendency to suggest and hint at many different possibilites. None of these are significantly
different from the ones I have listed however.

11

� There is a list of builtin functions (Min, Max, etc.)10 which I leave out of the syntax. All
of these functions can be composed with the blocks which are available. In most cases, Zuse
gives these compositions himself.

� There is another looping construct W6, which operates on a list, taking values until the list
is empty. But I did not gain a sufficient understanding from the description11 to formalize it.

3 Formalization

The syntax of Plankalkül will be given in an extended Backus Naur Form, and employs the follow-
ing categories.

Variables x0, x1, x2
Boolean Expressions b0, b1, b2
Arithmatic Expressions a0, a1, a2
List Expressions l0, l1, l2
Statements S0, S1, S2
Numerical Expressions n0, n1, n2

The syntax in Plankalkül will be represented by the following syntax.

Program ::= Plan

∣∣∣∣ Program

Plan ::=
Randauszug

Stm
Randauszug ::= R(Vars) ⇒ (Vars)

Vars ::= x

∣∣∣∣ Vars, x

BitExp ::= +

∣∣∣∣ -

∣∣∣∣ b ∣∣∣∣ b0 ∧ b1 ∣∣∣∣ b0 ∨ b1 ∣∣∣∣ b0 → b1

∣∣∣∣ b0 = b1

∣∣∣∣ b0 ∼ b1

∣∣∣∣ b0 � b1

∣∣∣∣ x ∈ l ∣∣∣∣
(x)(x ∈ l ⇒ R(x))

∣∣∣∣ (Ex)(x ∈ l ⇒ R(x))

ArithExp ::= n

∣∣∣∣ x ∣∣∣∣ a0 + a1

∣∣∣∣ a0 - a1

∣∣∣∣ a0 × a1

∣∣∣∣ a0 ÷ a1

∣∣∣∣ N(l)

∣∣∣∣ x́(x ∈ l ∧ R(x))

ListExp ::= ∅
∣∣∣∣ x̂(x ∈ l ∧ R(x))

∣∣∣∣ ˆx̂(x ∈ l ∧ R(x))

10Zuse (1945), p.116
11Zuse (1945), p.30

12

LoopStm ::= µx(x ∈ l ∧ R(x))

∣∣∣∣ λx(x ∈ l ∧ R(x))

∣∣∣∣ Stm

∣∣∣∣ LoopStm
CondStm ::=

b →
˙
S

CondStm

∣∣∣∣ b →˙ S

∣∣∣∣ Fin

Stm ::= AExp ⇒ x

∣∣∣∣ BExp ⇒ x

∣∣∣∣ S0 | S1 ∣∣∣∣ S0
S1

∣∣∣∣ b →˙ S

∣∣∣∣ W [CondStm]

∣∣∣∣
W0(n) [LoopStm]

∣∣∣∣ W1(n) [LoopStm]

∣∣∣∣ W2(n) [LoopStm]

∣∣∣∣ W3(n,m) [LoopStm]

∣∣∣∣
W4(n,m) [LoopStm]

∣∣∣∣ W5(n,m) [LoopStm]

12

This syntax shows how statements in Plankalkül can be constructed. Every rule will be given a
semantics to describe the effect of the statement on states.

A state is a representation of computer memory, formaly defined as a function from a variable name
to a value. The notation from Nielson & Nielson (1999) denoted states like s, s′, s′′. Supposing we
have a variable x which represents the value 5 in state s, the function s x results in the value 5.
Substitutions are also possible, s[x 7→ 5] means change the value of the variable x in state s to the
value 5.

3.1 Boolean Expressions

The function B maps a boolean expression and a state to a truth value: tt for true and ff for false.

B: BitExp → (State → {tt, ff})

The semantics of bits are given as follows:

12The BitExp expresssions + and - are not mathematical symbols. Instead Zuse uses + to denote the boolean
value true and - to denote the boolean value false. At Stm there are two, semantically equivalent composition
statements. The exclusion of one of them significantly decreases the readability of the code. Finally, Zuse uses the
same unfortunate symbol he uses to represent assignment in (x)(x ∈ l ⇒ R(x)) and (Ex)(x ∈ l ⇒ R(x)). This symbol
should not be interpreted as an assignment neither should it be interpreted as a logical implication.

13

BJ+Ks = tt
BJ-Ks = ff

BJbKs =

{
tt if BJbKs = ff
ff if BJbKs = tt

BJb1∧b2Ks =

{
tt if BJb1Ks = tt and BJb2Ks = tt
ff if BJb1Ks = tt or BJb2Ks = tt

BJb1∨b2Ks =

{
ff if BJb1Ks = ff or BJb1Ks = ff
tt if BJb1Ks = tt and BJb2Ks = tt

BJb1→b2Ks =

{
ff if BJb1Ks = tt or BJb2Ks = ff
tt otherwise

BJb1∼b2Ks =

{ tt if BJb1Ks = tt and BJb2Ks = tt
tt if BJb1Ks = ff and BJb2Ks = ff
ff otherwise

BJb1�b2Ks =

{ ff if BJb1Ks = tt and BJb2Ks = tt
ff if BJb1Ks = ff and BJb2Ks = ff
tt otherwise

BJx∈lKs =
Let l = LJlKs{

tt if AJxKs ∈ l
ff otherwise

BJR(x)Ks =
Let s′ be s′ such that 〈R(x), s〉 →s′{

tt if s′ x = tt
ff otherwise

BJ(x)(x ∈ l ⇒ R(x))Ks =
Let l = LJlKs{

tt if ∀a:l BJR(x)Ks[x/a] = tt
ff otherwise

BJ(Ex)(x ∈ l ⇒ R(x))Ks =
Let l = LJlKs{

tt if ∃a:l such that BJR(x)Ks[x/a] = tt
ff otherwise

3.2 Arithmatic Expressions

A: ArithExp → (State ↪→ Z)

The function A maps an Arithmatic Expression to a real number. In contrast to the other inter-
pretation functions, this one is partial since the construct x́(x ∈ l ∧ R(x)) is partially defined.

14

AJnKs = n
AJxKs = s x

AJa0 + a1Ks = AJa0Ks + AJa1Ks
AJa0 × a1Ks = AJa0Ks × AJa1Ks
AJa0 - a1 Ks = AJa0Ks - AJa1Ks
AJa0 ÷ a1Ks =

⌊
AJa0Ks
AJa1Ks

⌋
AJN(l)Ks = #(LJlKs)

AJ x́(x ∈ l ∧ R(x)) Ks =
a such that
if l be LJlKs,
then a ∈ l and LJR(x)Ks[x/a] = tt

3.3 List Expressions

Zuse has introduced two sorts of operators based on array datatypes. The first operates on sets, the
second operates on sequences. The practical difference in Plankalkül is that sequences can contain
more than one copy of the same element. A set cannot contain duplicates. For the semantics these
will require two separate interpretation functions.

L: ListExp → (State → {Z})
L′: ListExp → (State → (Z))

The first function maps a list expression and a state to a mathematical set, the second function
maps a list expression and a state to a sequence.

LJ ∅ Ks = ∅
LJ x̂(x ∈ l ∧ R(x)) Ks = { x | x ∈ LJlKs ∧ BJR(a)Ks[a/x] = tt }
L′J x̂(x ∈ l ∧ R(x)) Ks = (x | x ∈ LJlKs ∧ BJR(a)Ks[a/x] = tt)

To give an example of the principle difference between these operators. If we suppose l is an array
of integers, and denotes the following array in modern notation: [1, 2, 3, 3, 4, 5, 6] and the function
R(x) returns true if the value of x is odd and false if the value of x is even, we get the following
results:

LJ x̂(x ∈ l ∧ R(x)) Ks = {1,3,5}
L′J x̂(x ∈ l ∧ R(x)) Ks = (1,3,3,5)

There are also two statements which are designed for use specifically in a loop, µx(x ∈ l ∧ R(x))
and λx(x ∈ l ∧ R(x)). Both are meant to yield every element of a list which conforms to specific
conditions. When there is no more element, the special symbol Fin is yielded.

Aloop: ListExp → (State → Z ∪ Fin)

15

µx(x ∈ l ∧ R(x)) =

{
Fin if AloopJN(l)Ks > s i
The nth value of LJlKs otherwise

λx(x ∈ l ∧ R(x)) =

{
Fin if AloopJN(l)Ks > s i
The (AloopJN(l)Ks - n)th value of LJlKs otherwise

In accordance to the syntax, the above commands can only be used within a loop, otherwise the
looping variable i is not defined.

3.4 Statements

Statements are handled by a function from state to state. A statement S0 and a state s are mapped
to a new state s′, 〈S, s〉 → s′, in accordance to a big step formantics in the style of Nielsen & Nielsen
(1999). The purpose of each transition is to map a statement from an initial state to the state at
the end of the execution of the statement.

[ass1] 〈a ⇒ x, s〉 → s[x7→AJaKs]
[ass2] 〈b ⇒ x, s〉 → s[x 7→BJbKs]

[→̇tt]
〈S,s〉 → s′

〈b →̇ S, s〉 → s′
if BJbKs = tt

[→̇ff] 〈b →̇ S, s〉 → s if BJbKs = ff

[comp1]
〈S1, s〉 → s′, 〈S2,s′〉 → s′′

〈S1 | S2, s〉 → s′′

[comp2]

〈S1,s 〉 → s′, 〈S2,s′ 〉 → s′′〈
S0
S1

, s

〉
→ s′′

As mentioned above, there are two equivalent composition rules.

3.5 Iteration statements

Since iteration in Plankalkül can be a bit complicated, and there are so many different variation
on the theme, this section will exclusively deal with iteration. The first construction, ’W’ is the
most difficult to formalize because it is the most adaptable. It runs until either all conditional
statements are false, or when the Fin symbol is encountered.

16

[Wff] 〈 W

 b0 →
˙
S0

...
bn →

˙
Sn

 , s〉 → s if BJb0Ks = ff ... BJbnKs = ff

[Wfin] 〈W

b0 →

˙
S0

...
bn →

˙
Sn

Fin
...

 ,s〉 → s if BJb0Ks = ff ... BJbnKs = ff

[Wtt]

〈Si∗ ,s〉 → s′, 〈W

 b0 →
˙
S0

...
bn →

˙
Sn

 , s′〉 → s′′

〈W

 b0 →
˙
S0

...
bn →

˙
Sn

 , s〉 → s′′

if BJbi∗Ks = tt, where i∗ is
the lowest number such that BJbaKs = tt

Zuse shows how W0 to W5 can be implemented using the basic W construct. This greatly helps to
clarify precisely how he wanted them to function. As opposed to the simple W, W1 to W5 have an
iteration variable which is used to keep track of the numbers of cycles of iteration. These variables,
like the variables n and m which are arguments to the loop, are strictly integers.

The iteration variable is sometimes denoted by e and sometimes i. When nesting loops, every
loop naturally must its own unique loop variable, but Zuse does not make clear how this would be
accomplished. In an implementation this problem will need to be adressed. In Plankalkül 2000,
nested loops are numbered W00, W01, etc.13 The iteration variables belonging to each is numbered
similarly i0, i1. Another possiblity would be to allow a programmer to choose a variable himself.

Iterate while i < n

13Rojas (2000), p.12

17

[W I
0] 〈W0(n) [S0], s〉 → s[i7→0] if s i = undefined

[W II
0] 〈W0 (n) [S0], s〉 → s if s i ≥ AJnKs

[W III
0]

〈S,s〉 → s′, 〈W0 (n) [S0], s
′[i 7→ s i + 1]〉 → s′′

〈W0 (n) [S0], s〉 → s′′
if s i < AJnKs

Iterate while i < n
[W I

1] 〈W1(n) [S0], s〉 → s[i7→0] if s i = undefined

[W II
1] 〈W1(n) [S0], s〉 → s if s i ≥ AJnKs

[W III
1]

〈S0,s〉 → s′, 〈W1(n)[S0],s
′[i 7→s i+1]〉 → s′′

〈W1(n) [S0], s〉 → s′′
if s i < AJnKs

The constructs W0 and W1 are equivalent according to this semantics. Presumably Zuse meant
the iteration variable for W0 not to be accessible within the loop, in contrast to all other state-
ments. This is contrary to his descriptions on how variables are declares (always local) and he does
not describe any way in which to accomplish this. As a result it is very difficult to realise in the
semantics and in the end both have been left semantically equivalent.

Iterate while i >0
[W I

2] 〈W2(n) [S0], s〉 → s[i7→AJnKs] if s i = undefined

[W II
2] 〈W2(n) [S0], s〉 → s if s i ≤ 0

[W III
2]

〈S0,s〉 → s′, 〈W2(n)[S0],s
′[i7→(s i)-1]〉 → s′′

〈W2(n) [S0], s〉 → s′′
if s i > 0

Loops with two arguments:

Iterate while n < m
[W I

3] 〈W3(n,m) [S0], s〉 → s[i 7→AJnKs] if s i = undefined

[W II
3] 〈W3(n,m) [S0], s〉 → s if s i ≥ AJnKs

[W III
3]

〈S0,s〉 → s′, 〈W3(n
′,m) [S0], s

′[i7→s i+1]〉 → s′′

〈W3(n,m) [S0], s〉 → s′′
if s i < AJmKs

Iterate while m < n
[W I

4] 〈W4(n,m) [S0], s〉 → s[i 7→AJnKs] if s i = undefined

[W I
4] 〈W4(n,m) [S0], s〉 → s if si ≤ AJnKs

[W III
4]

〈S0,s〉 → s′, 〈W4(n
′,m) [S0], s

′[i 7→s i-1]〉 → s′′

〈W4(n,m) [S0], s〉 → s′′
if s i > AJmKs

Iterate while i 6= m

18

[W I
5] 〈W5(n,m) [S0], s〉 → s[i 7→AJnKs] if s i = undefined

[W I
5] 〈W5(n,m) [S0], s〉 → s if AJmKs = AJnKs

[W III
5]

〈S0,s〉 → s′, 〈W5(n
′,m) [S0], s

′[i 7→s i+1]〉 → s′′

〈W5(n,m) [S0], s〉 → s′′
if AJmKs > AJnKs

[W IV
5]

〈S0,s〉 → s′, 〈W5(n
′,m) [S0], s

′[i 7→s i-1]〉 → s′′

〈W5(n,m) [S0], s〉 → s′′
if AJmKs < AJnKs

This concludes the semantics of Plankalkül.

4 Application

A formal semantics has several uses. It can be used to prove or disprove the equivalence of different
statements of Plankalkül, or it can be used to test an implementation, like Plankalkül 2000. It
can be used towards generating automatic proofs. In itself it shows a few important properties of
Plankalkül. The semantic of Plankalkül is equivalent to other minimal languages, such as the While
from Nielson & Nielson (1999) and Edsger Dijkstra’s Guarded Command Language introduced in
Dijkstra (1975). Plankalkül may have an unfamiliar notation and a collection of features found in
no other programming language since, but it is equivalent to every major and modern language.
Everything that can be accomplished in a modern programming language, can theoretically be done
in a minimal formal language. Everything that can theoretically be done in a modern programming
language can be done in Plankalkül.

Another good way to use a formalized semantics is to test an implementation. The first implemen-
tation of Plankalkül was made at the University of Berlin in 2000.14 This implementation written in
Java has a linearised version of the syntax and a simulation of memory state after the execution of a
plan.15. Unfortunately the implementation is not perfect, and the looping constructs do not seem to
function. Even the simple examples from the implementation document containing a loop do so.16

So unfortunately the implementation is not as complete as the document suggests, or some new
errors have been introduced later. The Berlin implementation uses a subset of Plankalkül, and an
adapted syntax. There is no way to chain different plans together, instead every plan is completely
independent of all others. The mathematical symbols have been changed to symbols which are more
suited to a modern keyboard and the notation for variables has been changed to be one-dimensional.

V0[1:5.0] Variable V0, component 1, of type 5.0
Z1[5.3 :9.0] Variable Z0, component 3 of component 5, of type 9.0
Z2[:12.3.0] Variable Z2, of type 12.3.0

17

Unfortunatly due to the unavailability of looping construct, no programs except very trivial ones
can be compiled. A verification using the semantics would not be very interesting. Fortunatly the
semantics rules I have developed in this paper can also be translated into a computer language.

14Rojas (2000), Rojas(2000a)
15It can be found on the internet at http://www.zib.de/zuse/home/Programs/PlancalculCompiler
16Rojas (2000a), for instance example P5 on p. 16.
17Rojas (2000), p.12.

19

With a simple parser, a compiler or interpreter of Plankalkül can be constructed, the latter of which
I have done. Translating these rules to a functional programming language like Haskell can be done
in a fairly intuitive way a few examples of which are given below.

4.1 Boolean Expressions

BJbKs =

{
tt if BJbKs = ff
ff if BJbKs = tt

BJb1∧b2Ks =

{
tt if BJb1Ks = tt and BJb2Ks = tt
ff if BJb1Ks = tt or BJb2Ks = tt

BJb1∨b2Ks =

{
ff if BJb1Ks = ff or BJb1Ks = ff
tt if BJb1Ks = tt and BJb2Ks = tt

In the semantics of this paper, a boolean expression is given a value by function B. Likewise in the
haskell code, the function bexp determines which rule is appropriate for a given boolean expression.
Each rule is a translation of the semantics rules above.

-- bexp: determines which rule must be used for a boolean expression

bexp :: ParseTree -> State -> Value

...

bexp (Branch "!" (a:[])) state = zuseNot (aexp a state) (aexp b state)

bexp (Branch "/\\" (a:b:[])) state = zuseAnd (bexp a state) (bexp b state)

bexp (Branch "\\/" (a:b:[])) state = zuseOr (bexp a state) (bexp b state)

...

-- zuseNot: flip a boolean value

zuseNot :: Value -> Value

zuseNot v =

if v == tt then ff

else if v == ff then tt

else error "zuseNot: not a boolean value"

-- zuseAnd: implements a boolean and

zuseAnd :: Value -> Value -> Value

zuseAnd v1 v2 =

if (v1 == tt) then

if (v2 == tt) then tt

else if (v2 == ff) then ff

else error "zuseAnd: not a boolean value"

else if (v1 == ff) then ff

else error "zuseAnd: not a boolean value"

--zuseOr: implements a boolean or (inclusive)

zuseOr :: Value -> Value -> Value

zuseOr v1 v2 =

20

if (v1 == ff) then

if (v2 == ff) then ff

else if (v2 == tt) then tt

else error "zuseAnd: not a boolean value"

else if (v1 == tt) then tt

else error "zuseAnd: not a boolean value"

4.2 Arithmetic Expressions

AJa0 + a1Ks = AJa0Ks + AJa1Ks
AJa0 × a1Ks = AJa0Ks × AJa1Ks
AJa0 - a1 Ks = AJa0Ks - AJa1Ks

Arithmatic expression are mapped to a value with a function A. In the haskell code the function
aexp determines which rule is appropriate and each of these rules is a close translation of the
semantics above to haskell code.

--aexp: determines which rule is appropriate for an arithmatic expression.

aexp :: ParseTree -> State -> Value

...

aexp (Branch "+" (a:b:[])) state = zuseAdd (aexp a state) (aexp b state) state

aexp (Branch "-" (a:b:[])) state = zuseSub (aexp a state) (aexp b state) state

aexp (Branch "*" (a:b:[])) state = zuseMult (aexp a state) (aexp b state) state

...

-- zuseAdd: Add two values together.

zuseAdd :: Value -> Value -> State -> Value

zuseAdd x y state = (A (devalueInt(x) + devalueInt(y)))

--zuseMult: Multiply two values.

zuseMult :: Value -> Value -> State -> Value

zuseMult x y state = (A (devalueInt(x) * devalueInt(y)))

--zuseSub: Subtract one value from another.

zuseSub :: Value -> Value -> State -> Value

zuseSub x y state = (A (devalueInt(x) - devalueInt(y)))

4.3 Iteration

Iterate while i < n
[W I

1] 〈W1(n) [S0], s〉 → s[i7→0] if s i = undefined

[W II
1] 〈W1(n) [S0], s〉 → s if s i ≥ AJnKs

[W III
1]

〈S0,s〉 → s′, 〈W1(n)[S0],s
′[i 7→s i+1]〉 → s′′

〈W1(n) [S0], s〉 → s′′
if s i < AJnKs

21

This looping construct uses a local iteration variable, i, which is accessible from within the loop. The
rule ‘zuseWiederOne’ matches the three semantics rules closely and should be easy to understand
even without the exact definition of the used Haskell datastructures.

-- plan: apply an expression to a state and return a new state

plan :: ParseTree -> State -> State

...

plan (Branch "W1" (a:b:[])) state

| (strip a) == "()" = zuseWiederOne (aexp a state) b state

| otherwise = state

...

-- Simple one argument loop with a local variable

zuseWiederOne :: Value -> ParseTree -> State -> State

zuseWiederOne n s0 state

| (s "i" state) == Undef = zuseWiederOne n s0 (replace "i" n state)

| (s "i" state) >= n = state

| otherwise = zuseWiederOne n s0 (plan s0 newstate)

where newstate = (replace "i" (A ((devalueInt (s "i" state)) + 1)) state)

4.4 Statements

[→̇tt]
〈S,s〉 → s′

〈b →̇ S, s〉 → s′
if BJbKs = tt

[→̇ff] 〈b →̇ S, s〉 → s if BJbKs = ff

[comp1]
〈S1, s〉 → s′, 〈S2,s′〉 → s′′

〈S1 | S2, s〉 → s′′

Statements are functions from one state to another. The function plan applies a statement to a
state and returns a new state. The entire program is applied step-by-step to an initial empty state.
The resulting state represents the memory state of the computer after running the program.

-- plan: apply an expression to a state and return a new state

plan :: ParseTree -> State -> State

...

plan (Branch "|" (a:b:[])) state = plan b (plan a state)

plan (Branch "->" (a:b:[])) state

| (strip a) == "tt" = plan b state

| (strip a) == "ff" = state

| (bexp a state) == tt = plan b state

| otherwise = state

...

The syntax I have chosen to implement is based on Plankalkül 2000, but in some cases a syntax
more closely resembling Zuse’s original syntax is supported as well. The the resulting interpreter is
an ongoing project. All the translated rules, and code can be found at http://zuse.wanzin.nl.

22

5 Conclusion

Plankalkül may have been conceived twenty-five years before the first high-level programming lan-
guage was implemented but it was hardly a theoretical exercise. It is made up of many of the
familiar constructs of modern imperative languages, and we find some constructs more akin to
functional languages. None of its features are uncommon and a formal semantics can be given
without much difficulty. We can conclude that Plankalkül is in no fundamental way different from
modern languages.

Zuse was foremost an engineer, not a theoretical researcher, and there is little doubt that Plankalkül
could have been implemented and used. Unfortunately it was published in the wrong circumstances,
years before the need for higher-level languages was widely spread. In 1945 all programs were low-
level, sometimes requiring a complete rewirering of the computer. Despite Zuse’s efforts to gain
public awareness for his language, most if not all the attention has gone to his computers, his
language usually ending up as no more than a footnote.

Although many of Konrad Zuse’s projects and accomplishments have remained far from public
attention, this is changing. Zuse is gaining increasing recognition as the inventor of the Z3, the
first Turing complete computer. It is likely that his contribution to the software side of computer
science will slowly gain more public attention in the years to come.

23

6 Bibliography

Bauer & Woessner (1972) F.L, Bauer and H. Woessner, The ”Plankalkül” of Konrad Zuse: A Forerunner
of Today’s Programming Languages, Communications of the ACM,
Volume 15, Number 7, July 1972.

Dijkstra (1975) Edsger Dijkstra, Guarded commands, Nondeterminacy and Formal derivation
of Programs, Association for Computing Machinery, Inc., 1975.

Giloi (1997) Wolfgang K. Giloi, Konrad Zuse’s Plankalkül: The First High-Level, ”non von
Neumann” programming language, IEEE Annals of the History of Computing,
Vol. 19, No. 2, 1997.

Hoare (1969) C.A.R. Hoare, An Axiomatic Basis for Computer Languages, Communications
of the ACM, volume 12, number 10, October 1969.

Nielson & Nielson (1999) Hanne Riis Nielson and Flemming Nielson, Semantics with Applications,
A Formal Introduction, http://www.daimi.au.dk/~hrn, 1999.

Rojas (1998) Raúl Rojas, How to make Zuse’s Z3 a universal computer, IEEE Annals
of the History of Computing 20 (3), 1998.

Rojas (2000) Raúl Rojas, Cüneyt Göktekin, Gerald Friedland, Mike Kruger, Ludmila Scharf,
Konrad Zuses Plankalkül - Seine Genese und einde moderne Implementierung,
Freie Universität Berlin, 2000.

Rojas (2000a) Raúl Rojas, Cüneyt Göktekin, Gerald Friedland, Mike Kruger,
Plankalkül: The First High-Level Programming Language and its Implementation,
Freie Universität Berlin, 2000.

Strachey (2000) Christopher Strachey, Fundamental Concept in Programming Languages,
Higher-Order and Symbolic Computation, 13, 11-49, Kluwer Academic
Publishers, 2000.

Zuse (1945) K. Zuse, Der Plankalkül (In der Fassung vond 1945), Konrad Zuse Internet
Archiven, http://www.zib.de/zuse, 1945.

Zuse (1959) K. Zuse, Über den Plankalkül, Elektron. Rechenal. 1 (1959) Bad Hersfeld, 1959.

24

