
Depixelizing Pixel Art

Johannes Kopf
Microsoft Research

Dani Lischinski
The Hebrew University

Nearest-neighbor result (original: 40 x 16 pixels) Our result

Figure 1: Naive upsampling of pixel art images leads to unsatisfactory results. Our algorithm extracts a smooth, resolution-independent
vector representation from the image, which is suitable for high-resolution display devices. (Input image © Nintendo Co., Ltd.).

Abstract

We describe a novel algorithm for extracting a resolution-
independent vector representation from pixel art images, which en-
ables magnifying the results by an arbitrary amount without im-
age degradation. Our algorithm resolves pixel-scale features in the
input and converts them into regions with smoothly varying shad-
ing that are crisply separated by piecewise-smooth contour curves.
In the original image, pixels are represented on a square pixel lat-
tice, where diagonal neighbors are only connected through a single
point. This causes thin features to become visually disconnected
under magnification by conventional means, and creates ambigui-
ties in the connectedness and separation of diagonal neighbors. The
key to our algorithm is in resolving these ambiguities. This enables
us to reshape the pixel cells so that neighboring pixels belonging
to the same feature are connected through edges, thereby preserv-
ing the feature connectivity under magnification. We reduce pixel
aliasing artifacts and improve smoothness by fitting spline curves
to contours in the image and optimizing their control points.

Keywords: pixel art. upscaling, vectorization

1 Introduction

Pixel art is a form of digital art where the details in the image are
represented at the pixel level. The graphics in practically all com-
puter and video games before the mid-1990s consist mostly of pixel
art. Other examples include icons in older desktop environments,
as well as in small-screen devices, such as mobile phones. Because
of the hardware constraints at the time, artists where forced to work
with only a small indexed palette of colors and meticulously ar-
range every pixel by hand, rather than mechanically downscaling

higher resolution artwork. For this reason, classical pixel art is usu-
ally marked by an economy of means, minimalism, and inherent
modesty, which some say is lost in modern computer graphics. The
best pixel art from the golden age of video games are masterpieces,
many of which have become cultural icons that are instantly recog-
nized by a whole generation, e.g. "Space Invaders" or the 3-color
Super Mario Bros, sprite. These video games continue to be en-
joyed today, thanks to numerous emulators that were developed to
replace hardware that has long become extinct.

In this paper, we examine an interesting challenge: is it possible to
take a small sprite extracted from an old video game, or an entire
output frame from an emulator, and convert it into a resolution-
independent vector representation? The fact that every pixel was
manually placed causes pixel art to carry a maximum of expression
and meaning per pixel. This allows us to infer enough information
from the sprites to produce vector art that is suitable even for signifi-
cant magnification. While the quantized nature of pixel art provides
for a certain aesthetic in its own right, we believe that our method
produces compelling vector art that manages to capture some of the
charm of the original (see Figure 1).

Previous vectorization techniques were designed for natural images
and are based on segmentation and edge detection filters that do not
resolve well the tiny features present in pixel art. These methods
typically group many pixels into regions, and convert the regions'
boundaries into smooth curves. However, in pixel art, every single
pixel can be a feature on its own or carry important meaning. As a
result, previous vectorization algorithms typically suffer from detail
loss when applied to pixel art inputs (see Figure 2).

A number of specialized pixel art upscaling methods have been de-
veloped in the previous decade, which we review in the next section.
These techniques are often able to produce commendable results.
However, due to their local nature, the results suffer from staircas-
ing artifacts, and the algorithms are often unable to correctly resolve
locally-ambiguous pixel configurations. Furthermore, the magnifi-
cation factor in all these methods is fixed to 2x, 3x, o r 4 x .

In this work, we introduce a novel approach that is well suited for
pixel art graphics with features at the scale of a single pixel. We
first resolve all separation/connectedness ambiguities of the origi-
nal pixel grid, and then reshape the pixel cells, such that connected
neighboring pixels (whether in cardinal or diagonal direction) share
an edge. We then fit spline curves to visually significant edges and
optimize their control points to maximize smoothness and reduce
staircasing artifacts. The resulting vector representation can be ren-
dered at any resolution.

PhotoZoom 4 (General Image Upsampling) hq4x (Specialized Pixel Art Upscaling) Adobe Live Trace (Vectorization)

Figure 2: Results achieved with representatives of different categories of algorithms. Compare these results to ours shown in Figure 1.

We successfully applied our algorithm to an extensive set of pixel
art images extracted from vintage video games and desktop icons,
as well as to complete frames produced by a Super Nintendo emu-
lator. We compare our results to various alternative upscaling meth-
ods, ranging from vectorization to general and pixel-art-specialized
image upscaling methods. In addition to the examples included in
this paper, all of our results and comparisons are included in the
supplementary material to this paper.

2 Previous Work
The previous work related to our paper can be classified into three
categories. In Figures 2 and 9, and, more extensively, in the supple-
mentary materials, we compare our algorithm to various represen-
tatives from each category.

General Image Upsampling

The "classical" approach to image upsampling is to apply linear fil-
ters derived either from analytical interpolation or from signal pro-
cessing theory. Examples include filters such as Nearest-Neighbor,
Bicubic, and Lancosz [Wolberg 1990]. These filters make no as-
sumptions about the underlying data, other than that it is essentially
band-limited. As a consequence, images upsampled in this manner
typically suffer from blurring of sharp edges and ringing artifacts.

In the last decade, many sophisticated algorithms have appeared
which make stronger assumptions about the image, e.g., assum-
ing natural image statistics [Fattal 2007] or self-similarity [Glasner
et al. 2009]. A comprehensive review of all these methods is well
beyond the scope of this paper. However, in most cases, these (nat-
ural) image assumptions do not hold for color-quantized, tiny pixel
art images. For this reason, these methods tend to perform poorly
on such inputs.

Pixel Art Upscaling Techniques

A number of specialized pixel art upscaling algorithms have been
developed over the years. Most of these have their origins in the em-
ulation community. None has been published in a scientific venue;
however, open source implementations are available for most. All
of these algorithms are pixel-based and upscale the image by a fixed
integer factor.

The first algorithm of this type that we are aware of is EPX [John-
ston 1992|, which was developed to port Lucas Arts games to early
color Macintosh computers, which had then about double the res-
olution than the original platform. The algorithm doubles the res-
olution of an image using a simple logic: every pixel is initially
replaced by 2 x 2 block of the same color; however, if the left and
upper neighbors in the original image had the same color, that color
would replace the top left pixel in the 2 x 2 block, and analogously
for the other corners.

The algorithm is simple enough to be applied in real-time and often
achieves good results. However, the direction of edges is quan-
tized to only 12 distinct directions which can cause the results to
appear blocky. Another limitation is in the strict local nature of

the algorithm which prevents it from correctly resolving ambigu-
ous connectedness of diagonal pixels. Both of these limitations are
demonstrated in Figure 9 (bottom right).

Several later algorithms are based on the same idea, but use more
sophisticated logic to determine the colors of the 2 x 2 block. The
best known ones are Eagle (Unknown 19971, 2xSaI [Ohannessian
1999|, and Scale2x [Mazzoleni 2001), which use larger causal
neighborhoods and blend colors. Several slightly different imple-
mentations exist under different names, such as SuperEagle and Su-
per2xSaI. An inherent limitation of all these algorithms is that they
only allow upscaling by a factor of two. Larger magnification can
be achieved by applying the algorithm multiple times, each time
doubling the resolution. This strategy, however, significantly re-
duces quality at larger upscaling factors, because the methods as-
sume non-antialiased input, while producing antialiased output.

The latest and most sophisticated evolution of this type of algo-
rithms is the hqx family [Stcpin 2003]. This algorithm examines
3 x 3 pixel blocks at a time and compares the center pixel to its 8
neighbors. Each neighbor is classified as being either similar or dis-
similar in color, which leads to 256 possible combinations. The al-
gorithm uses a lookup table to apply a custom interpolation scheme
for each combination. This enables it to produce various shapes,
such as sharp corners, etc. The quality of the results is high. How-
ever, due to its strictly local nature, the algorithm cannot resolve
certain ambiguous patterns and is still prone to produce staircasing
artifacts. Lookup tables exist only for 2x, 3x, and 4x magnification
factors.

Image Vectorization

A large body of work deals with the automatic extraction of vector
representations from images. These methods share a similar goal
with our algorithm. However, most are designed with larger natural
images in mind. At their core, vectorization methods rely on seg-
mentation or edge detection algorithms to cluster many pixels into
larger regions, to which vector curves and region primitives are fit.
These clustering tools do not perform well on pixel art images, be-
cause features are tiny, all edges are step edges, and there are no
gradients that can be followed downhill. For these reasons, all al-
gorithms examined in this section tend to lose the small features
characteristic to pixel art.

Another challenge for these algorithms is dealing with 8-connected
pixels; many pixel art images contain thin features that are only
connected through pixel corners. General image vectorization tools
are not designed to handle this situation and the ambiguities that
arise from it and consequently tend to break the connectivity of
these features. Below, we mention only a few representative vec-
torization approaches.

Selinger [2003] describes an algorithm dubbed Potrace for trac-
ing binary images and presents results on very tiny images. This
method, however, cannot handle color images. These have to
be quantized and decomposed into separate binary channels first,
which are then traced separately. This results in inter-penetrating
shapes.

Figure 3: Overview of our algorithm. (a) Input Image (16 x 16 pixels), (b) Initial similarity graph with crossing edges. The blue edges lie
inside fiat shaded regions, so they can be safely removed. In case of the red lines, removing one or the other changes the result, (c) Crossing
edges resolved, (d) Reshaped pixel cells reflecting the connections in the resolved similarity graph, (e) Splines fit to visible edges, (f) Final
result with splines optimized to reduce staircasing (Image © Nintendo Co., Ltd.).

Lecot and Levy [2006] present a system ("ARDECO") for vector-
izing raster images. Their algorithm computes a set of vector prim-
itives and first- or second-order gradients that best approximates
the image. This decomposition is based on a segmentation algo-
rithm, which is unlikely to work satisfactorily on pixel art images.
Lai et al. [2009] present an algorithm for automatic extraction of
gradient meshes from raster images. This algorithm also relies on
segmentation and is for the same reason unlikely to perform well
on pixel art images.

Orzan et al. [2008] introduce image partitioning diffusion curves,
which diffuse different colors on both sides of the curve. In their
work, they also describe an algorithm for automatically extracting
this representation from a raster image. Their formulation, how-
ever, relies on Canny edge detection. These filters do not work well
on pixel art input, most likely due to the small image size, since
edge detectors have a finite support. Xia et al. [2009] describe a
technique that operates on a pixel level triangulation of the raster
image. However, it also relies on Canny edge detection.

Various commercial tools, such as Adobe Live Trace [Adobe, Inc.
2010| and Vector Magic (Vector Magic, Inc. 2010|, perform auto-
matic vectorization of raster images. The exact nature of the under-
lying algorithms is not disclosed, however, they generally do not
perform well on pixel art images, as is evidenced by the compar-
isons in this paper and in our supplementary material.

3 Algorithm
Our goal in this work is to convert pixel art images to a resolution-
independent vector representation, where regions with smoothly
varying shading are crisply separated by piecewise-smooth contour
curves. While this is also the goal of general image vectorization
algorithms, the unique nature of pixel art images poses some non-
trivial challenges:

1. Every pixel matters. For example, a single pixel whose color
is sufficiently different from its surrounding neighborhood is
typically a feature that must be preserved (e.g., a character's
eye).

2. Pixel-wide 8-connected lines and curves, such as the black
outline of the ghost in Figure 3a. These features appear visu-
ally connected at the original small scale, but become visually
disconnected under magnification.

3. Locally ambiguous configurations: for example, when con-
sidering a 2x2 checkerboard pattern with two different colors,
it is unclear which of the two diagonals should be connected
as part of a continuous feature line (see the mouth and the ear
of the ghost in Figure 3a). This problem has been studied in
the context of foreground / background separation in binary
images, and simple solutions have been proposed [Kong and

Rosenfeld 1996]. The challenge, however, is more intricate in
the presence of multiple colors.

4. The jaggies in pixel art are of a large scale compared to the
size of the image, making it difficult to distinguish between
features and pixelization artifacts. For example, in Figure 3a,
how does one know that the mouth should remain wiggly,
while the ghost outline should become smooth?

3.1 Overview

The main primitive in our vector representation are quadratic B-
spline curves, which define the piecewise smooth contours between
regions. Once the curves are computed, an image can be rendered
using standard tools [Nehab and Hoppe 2008; Jeschke et al. 20091.
Thus, our main computational task is to determine the location and
the precise geometry of these contours. Similarly to other vector-
ization algorithms, this boils down to detecting the edges in the
input pixel art image and fitting curves of the proper shape to them.
However, this process is complicated by the reasons listed earlier.

Because of the small scale of pixel art images and the use of a lim-
ited color palette, localizing the edges is typically easy: any two ad-
jacent pixels with sufficiently different colors should be separated
by a contour in the vectorized result. However, the challenge lies in
connecting these edge segments together, while correctly handling
8-connected pixels and resolving local ambiguities.

Consider a square lattice graph with (w + 1) x (h + 1) nodes, rep-
resenting a w x h image. Each pixel corresponds to a closed cell
in this graph. Horizontal and vertical neighbor cells share an edge
in this graph, while diagonal neighbors share only a vertex. These
diagonal neighbors become visually disconnected when the lattice
is magnified, while the neighbors that share an edge remain visu-
ally connected. Thus, the first step of our approach is to reshape the
original square pixel cells so that every pair of neighboring pixels
along a thin feature, which should remain connected in the vec-
torized result, correspond to cells that share an edge. In this pro-
cess, described in Section 3.2, we employ a few carefully designed
heuristics to resolve locally ambiguous diagonal configurations.

Having reshaped the graph, we identify edges where the meeting
pixels have significantly different colors. We refer to these edges as
visible because they form the basis for the visible contours in our
final vector representation, whereas the remaining edges will not be
directly visible as they will lie within smoothly shaded regions. To
produce smooth contours, we fit quadratic B-spline curves to se-
quences of visible edges, as described in Section 3.3. However, be-
cause the locations of the curve control points are highly quantized
due to the low-resolution underlying pixel grid, the results might
still exhibit staircasing. We therefore optimize the curve shapes
to reduce the staircasing effects, while preserving intentional high-
curvature features along each contour, as described in Section 3.4.

(a) Sparse pixels heuristic (b) Islands heuristic

Figure 4: Heuristics for resolving crossing edges in the similarity
graph: Curves: not shown here, see Figure 3b. Sparse pixels: the
magneto component is sparser than the green one. This heuristic
supports keeping the magenta edge connected. Islands: In this
case the heuristic supports keeping the magenta edge connected,
because otherwise a single pixel "" "island" would be created.

three simple heuristics that, combined, properly resolve the con-
nectivity issue in a surprisingly large number of cases, as evidenced
by the large number of examples in our supplementary material.
We compute an associated weight for each heuristic, and in the end
choose to keep the connection that has aggregated the most weight.
In case of a tie, both connections are removed. These heuristics are
explained below:

Curves If two pixels are part of a long curve feature, they should
be connected. A curve is a sequence of edges in the similarity
graph that only connects valence-2 nodes (i.e., it does not con-
tain junctions). We compute the length of the two curves that
each of the diagonals is part of. The shortest possible length
is 1, if neither end of the diagonal has valence of 2. This
heuristic votes for keeping the longer curve of the two con-
nected, with the weight of the vote defined as the difference
between the curve lengths. Figure 3b shows two examples for
this heuristic: the black pixels are part of a curve of length 7,
whereas the white pixels are not part of a curve (i.e., length 1).
Therefore, the heuristic votes for connecting the black pixels
with a weight of 6.

Finally, we render an image by interpolating colors using radial ba-
sis functions. This is done in an edge-aware manner, so that the
influence of each pixel color does not propagate across the contour
lines.

3.2 Reshaping the pixel cells

The goal of this first stage is to reshape the pixel cells, so that neigh-
boring pixels that have similar colors and belong to the same feature
share an edge. To determine which pixels should be connected in
this way, we create a similarity graph with a node for each pixel.
Initially, each node is connected to all eight of its neighbors. Next,
we remove from this graph all of the edges that connect pixels with
dissimilar colors. Following the criteria used in the hqx algorithm
[Stepin 20031, we compare the YUV channels of the connected pix-
els, and consider them to be dissimilar if the difference in Y, U, V

Figure 3b shows the similarity graph that was processed in this
manner. This graph typically contains many crossing diagonal con-
nections. Our goal is now to eliminate all of these edge crossing
in order to make the graph planar (Figure 3c). The dual of the re-
sulting planar graph will have the desired property of connected
neighboring pixel cells sharing an edge (Figure 3d).

We distinguish between two cases:

1. If a 2 x 2 block is fully connected, it is part of a continuously
shaded region. In this case the two diagonal connections can
be safely removed without affecting the final result. Such con-
nections are shown in blue in Figure 3b.

2. If a 2 x 2 block only contains diagonal connections, but no
horizontal and vertical connections, it means that removing
one connection or the other will affect the final result. In this
case we have to carefully choose which of the connections to
remove. Such connections are shown in red in Figure 3b.

It is not possible to make this decision locally. If one only examines
the 2 x 2 blocks with the red connections in Figure 3b, there is
no way to determine whether the dark or the light pixels should
remain connected. However, by examining a larger neighborhood
it becomes apparent that the dark pixels form a long linear feature,
and therefore should be connected, while the light pixels are part of
the background.

Determining which connections to keep is related to Gestalt laws,
and essentially aims to emulate how a human would perceive the
figure. This is a very difficult task; however, we have developed

Sparse pixels in two-colored drawings, humans tend to perceive
the sparser color as foreground and the other color as back-
ground. In this case we perceive the foreground pixels as con-
nected (e.g., think of a dotted pencil line). We turn this into
a heuristic by measuring the size of the component connected
to the diagonals. We only consider an 8 x 8 window centered
around the diagonals in question. This heuristic votes for con-
necting the pixels with the smaller connected component. The
weight is the difference between the sizes of the components.
This case is illustrated in Figure 4a.

Islands we attempt to avoid fragmentation of the figure into too
many small components. Therefore, we avoid creating small
disconnected islands. If one of the two diagonals has a
valence-1 node, it means cutting this connection would cre-
ate a single disconnected pixel. We prefer this not to happen,
and therefore vote for keeping this connection with a fixed
weight, with an empirically determined value of 5. This case
is illustrated in Figure 4b.

Now that we have resolved the connec-
tivities in the similarity graph, the graph
is planar, and we can proceed to extract-
ing the reshaped pixel cell graph. This
can be done as follows: cut each edge
in the similarity graph into two halves
and assign each half to the node it is con-
nected to. Then, the reshaped cell graph
can be computed as a generalized Voronoi diagram, where each
Voronoi cell contains the points that are closest to the union of a
node and its half-edges. We can further simplify this graph through
collapse of all valence-2 nodes. The inset figure shows the gener-
alized Voronoi diagram corresponding to a simple similarity graph
alongside its simplified version. Figure 3d shows the simplified
Voronoi diagram for the similarity graph in Figure 3c. Note that the
node positions are quantized in both dimensions to multiples of a
quarter pixel. We will make use of this fact later when we match
specific patterns in the graph.

The shape of a Voronoi cell is fully determined by its local neigh-
borhood in the similarity graph. The possible distinct shapes are
easy to enumerate, enabling an extremely efficient algorithm, which
walks in scanline order over the similarity graph, matches specific
edge configurations in a 3 x 3 block a time, and pastes together
the corresponding cell templates. We directly compute the simpli-
fied Voronoi diagram in this manner, without constructing the exact
one.

Accurate Simplified

Figure 5: Resolving T-junctions at the marked nodes. Spline curves
are shown in yellow, (a) In this case the left edge is a shading edge,
therefore the other two edges are combined into a single spline
curve. (b) Here, three differently colored regions meet at a point.
The edges which form the straightest angle are combined into a
single spline.

3.3 Extracting Spline Curves

The reshaped cell graph resolves all connectivity issues and en-
codes the rough shape of the object. However, it contains sharp
corners and may look "blocky" due to the quantized locations of
the nodes. We resolve these issues by identifying the visible edges,
where significantly different colors meet. Connected sequences of
visible edges that contain only valence-2 nodes are converted into
quadratic B-spline curves |de Boor 19781- Here, we only count vis-
ible edges to determine the valence of a node. The control points of
the B-splines are initialized to the node locations.

When three splines end at a single common node, we can choose to
smoothly connect two of the splines into one, creating a T-junction.
This is preferable because it leads to a simpler and smoother figure.
The question is: which two out of three splines to connect?

We first categorize each of the three visible edges meeting at the
node as either a shading edge or a contour edge. Shading edges
separate cells that have similar colors (which were nevertheless
considered different enough to classify the edge as visible to begin
with). Contour edges separate cells with strongly dissimilar colors.
Specifically, in our implementation we classify an edge as a shad-
ing edge if the two cells have a YUV distance of at most 100/255. Now,
if at a 3-way junction we have one shading edge and two contour
edges, we always choose to connect the contour edges. This situa-
tion is demonstrated in Figure 5a. If this heuristic does not resolve
the situation, we simply measure the angles between the edges and
connect the pair with the angle closest to 180 degrees. This situa-
tion is shown in Figure 5b.

One minor issue arises from the fact that B-spline curves are only
approximating their control points, but do not interpolate them in
general. For this reason, we have to adjust the endpoint of a curve
that ends at a T-junction to properly lie on the curve that continues
through the T-junction.

3.4 Optimizing the Curves

Fitting B-spline curves greatly improves the smoothness of our re-
sults; however, they still suffer from staircasing artifacts (Figure
6b). Therefore, we further improve the smoothness of the curves
by optimizing the locations of their control points. The optimiza-
tion seeks the minimum of a sum of per-node energy terms:

(a) Input (1 3 X 1 5 p ixe l s) (b) S p l i n e s In i t ia l ized (c) S p l i n e s O p t i m i z e d

Figure 6: Removing staircasing artifacts by minimizing spline cur-
vature.

Figure 7: Corner patterns our algorithm detects. The original
square pixel grid is shown in gray. Detecting these patterns is
straight forward because node locations are quantized to multiples
of a quarter pixel in both dimensions due to the graph construction.

where pi is the location of the i-th node. The energy of a node is
defined as the sum of smoothness and positional terms:

The two terms have equal contribution to the energy. Smoothness
is measured as the absence of curvature. Therefore, we define the
smoothness energy as

where r (i) is the region of the curve that is influenced by pi, and
k(s) is the curvature at point s. We compute the integral numeri-

cally by sampling the curve at fixed intervals.

In order to prevent objects from changing too much, we need to
further constrain the positions of the control points. We define a
positional energy term as follows:

where, ^pi is the initial location of the i-th node. Raising the term
to the fourth power allows nodes to move relatively freely within a
small region around their original location while sharply penalizing
larger deviations.

Note that the energy function as defined above does not distinguish
between staircasing artifacts and intentional sharp features, such as
corners. In the former case, smoothing is desired, however, in the
latter, it needs to be avoided. We correct this behavior by detecting
sharp features in the model and excluding the regions around these
features from the integration in Equation 3. Due to the quantized
nature of the reshaped cell graph, sharp features can only take on a
limited number of specific patterns, shown in Figure 7. Thus, we
simply look for these patterns (including their rotations and reflec-
tions) in the reshaped cell graph. Having detected a pattern, we
exclude the part of the spline curve between the nodes of the pat-
tern from the integration (3). Figure 8 shows the detected patterns
on an example sprite and highlights the parts of the curve which arc
excluded from the integration.

While our energy function is non-linear, it defines a very smooth
potential surface, and therefore can be optimized using a simple

(b) Without corner detection (c) With corner detection

Figure 8: Corner detection: (a) Nodes that belong to a detected
comer pattern are shown in red. The curve segments excluded from
the evaluation of the smoothness term are highlighted in black.

pies included in the supplementary material, computed on a single
core of a 2.4 GHz CPU:

Median Average Min Max
Similarity Graph Construction 0.01s 0.01s 0.00s 0.07s
Spline Extraction 0.02s 0.07s 0.00s 1.95s
Spline Optimization 0.60 s 0.71s 0.01s 1.93s
Total 0.62s 0.79s 0.01s 3.06s

While our current focus was not on achieving real-time speed, we
were still interested in how our algorithm would perform on ani-
mated inputs, e.g. in a video game. For this experiment, we dumped
frames from a video game emulator to disk and applied our tech-
nique to the full frames. The two stages of our algorithm that are
most critical for temporal coherency are the decisions made when
connecting pixels in the similarity graph and the node location op-
timization. On the sequences we tried, our heuristics performed
robustly in the sense that they made similar decisions on sprite fea-
tures, even when they changed slightly throughout the animation
phases. In the optimization, the node locations are actually quite
constrained due to the large power in the positional energy term.
For this reason, our results can never deviate much from the input
and are therefore as temporally consistent as the input. Figure 10
shows a video game frame upscaled using our method. In the sup-
plementary materials, we provide high resolution videos for a long
sequence and compare these to other techniques.

relaxation procedure. At each iteration, we do a random walk over
the nodes and optimize each one locally. For each node, we try
several random new offset positions within a small radius around its
current location, and keep the one that minimizes the node's energy
term.

After optimizing the locations of the spline nodes, the shape of the
pixel cells around the splines might have changed significantly. We
therefore compute new locations for all nodes that were not con-
strained in the optimization described above (and do not lie on the
boundary of the image) using harmonic maps [Eck et al. 1995].
This method minimizes the cell distortion, and boils down to solv-
ing a simple sparse linear system (sec Hormann [2001] for the exact
form and simple explanation).

3.5 Rendering

Our vector representation can be rendered using standard vector
graphics rendering techniques, e.g. the system described by Nchab
and Hoppc [2008]. Diffusion solvers can also be used to render
the vectors. Here, one would place color diffusion sources at the
centroids of the cells and prevent diffusion across spline curves.
Jeschke et al. 120091 describe a system that can render such diffu-
sion systems in real time. The results in this paper were rendered
using a slow but simple implementation, where we place truncated
Gaussian influence functions (o = 1, radius 2 pixels) at the cell
centroids and set their support to zero outside the region visible
from the cell centroid. The final color at a point is computed as the
weighted average of all pixel colors according to their respective
influence.

4 Results

We applied our algorithm to a wide variety of inputs from video
games and other software. Figure 9 shows representative results of
our algorithm and compares them to various alternative upscaling
techniques. In the supplementary materials, we provide an exten-
sive set of additional results and comparisons.

The performance of our algorithm depends on the size and the num-
ber of curves extracted from the input. While we did not invest
much time into optimizing our algorithm, it already performs quite
well. The following table summarizes the timings for the 54 exam-

4.1 Limitations

Our algorithm is designed specifically for hand-crafted pixel art im-
ages. Starting in the mid-nineties, video game consoles and com-
puters were able to display more than just a handful of colors. On
these systems, designers would start from high resolution multi-
color images, or even photos, and then downsample them to the
actual in-game resolution. This results in very anti-aliased sprites,
which are in some sense closer to natural images than to the type
of input our algorithm was designed for. The hard edges that we
produce do not always seem suitable for representing such figures.
Figure 11 shows an example of a sprite that was designed in this
manner.

Another limitation is that our splines sometimes smooth certain fea-
tures too much, e.g. the corners of the "386" chip in Figure 9. Our
corner detection patterns are based on heuristics and might not al-
ways agree with human perception. One possible future extension
is to allow increasing the multiplicity of the B-spline knot vector
to create sharp features in the vector representation, for example in
places where long straight lines meet at an angle.

While many of our inputs use some form of anti-aliasing around
edges, we have not experimented with pixel art that use strong
dithering patterns, such as checker board patterns, to create the
impression of additional shades. Our algorithm might need to be
adapted to handle such inputs well.

5 Conclusions
We have presented an algorithm for extracting a resolution-
independent vector representation from pixel art images. Our algo-
rithm resolves separation/connectedness ambiguities in the square
pixel lattice and then reshapes the pixel cells so that both cardinal
and diagonal neighbors of a pixel are connected through edges. We
extract regions with smoothly varying shading and separate them
crisply through piccewise smooth contour curves. We have demon-
strated that conventional image upsampling and vectorization al-
gorithms cannot handle pixel art images well, while our algorithm
produces good results on a wide variety of inputs.

There are many avenues for future work. Obviously, it would be
nice to optimize the performance of the algorithm so that it can be
applied in real-time in an emulator. Some of the ideas presented in

Figure 9: Some results created with algorithm and comparison to various competing techniques. Please zoom into the PDF to see details,
and see the supplementary materials for a large number of additional results and comparisons (Images: Keyboard, 386 © Microsoft Corp.;
Help, Yoshi, Toad © Nintendo Co., Ltd.; Bomberman © Hudson Soft Co., Ltd.; Axe Battler © Sega Corp.; Invaders © Taito Corp.).

Figure 10: Applying pixel art upscaling in a dynamic setting. The output frame of an emulator is magnified by 4x (crop shown). Please zoom
into the PDF to see details (Image © Nintendo Co., Ltd.).

Input (2 4 x 2 9 pixels) Our Result

Figure 11: A less successful case. Ann-aliased inputs are difficult
to handle for our algorithm. "We are doomed..." (Image © id
Software)

this work can potentially benefit general image vectorization tech-
niques. Another interesting direction would be to improve the han-
dling of anti-aliased input images. This might by done by render-
ing some curves as soft edges rather than sharp contours. A whole
new interesting topic would be to look into temporal upsampling
of animated pixel art images. If we magnify from a tiny input to
HD resolution, locations are quite quantized which might result in
" jumpy" animations. Since many modern display devices are oper-
ating at a much higher refresh rate than earlier hardware, one could
improve the animations by generating intermediate frames.

Acknowledgements

We thank Holger Winnemoller for useful comments and help in
creating some of the comparisons. This work was supported in part
by the Israel Science Foundation founded by the Israel Academy of
Sciences and Humanities.

References

ADOBE, INC., 2010. Adobe Illustrator CS5. h t t p : / / w w w .
a d o b e . c o m / p r o d u c t s / i l l u s t r a t o r / .

DE BOOR. C. 1978. A Practical Guide to Splines. Springer-Verlag.

E C K , M . , D E R O S E , T . , D U C H A M P , T . , H O P P E , H . , LOUNSBERY,
M., AND STUETZLE, W. 1995. Multiresolution analysis of arbi-
trary meshes. Proceedings of SIGGRAPH '95, 173-182.

G L A S N E R , D . , B A C O N , S . , AND I R A N I , M . 2 0 0 9 . S u p e r -
resolution from a single image. In Proc. ICCV% IEEE.

HORM ANN, K. 2001. Theory and Applications of Parameterizing
Triangulations. PhD thesis, University of Erlangen.

J E S C H K E , S . , C L I N E , D . , AND W O N K A , P. 2 0 0 9 . A G P U L a p l a -
cian solver for diffusion curves and Poisson image editing. ACM
Trans. Graph. 28,5, 116:1-116:8.

JOHNSTON, E., 1992. Eric's pixel expansion (EPX).
h t t p : / / e n . w i k i p e d i a . o r g / w i k i / P i x e l _ a r t _
s c a l i n g _ a l g o r i t h m s .

K O N G , T . Y . , AND R O S E N F E L D , A . , E d s . 1996 . Topological Algo-
rithms for Digital Image Processing. Elsevier Science Inc., New
York, NY, USA.

L A I , Y . - K . , H u , S . - M . , AND M A R T I N , R . R . 2 0 0 9 . A u t o m a t i c
and topology-preserving gradient mesh generation for image vec-
torization. ACM Trans. Graph. 28, 3, 85:1-85:8.

LECOT, G. , AND LEVY, B. 2006. ARDECO: Automatic region
detection and conversion. In Proc. EGSR 2006, 349-360.

MAZZOLENI, A., 2001. Scale2x. h t t p : / / s c a l e 2 x .
s o u r c e f o r g e . n e t .

NEHAB, D., AND HOPPE, H. 2008. Random-access rendering
of general vector graphics. ACM Trans. Graph. 27, 5, 135:1-
135:10.

OHANNESSIAN, R., 1999. 2xsai. h t t p : / / b o b .
a l l e g r o n e t w o r k . c o m / p r o j e c t s . h t m l .

O R Z A N , A . , B O U S S E A U , A . , W I N N E M Ö L L E R . H . , B A R L A ,
P. , T H O L L O T , J . , AND S A L E S I N , D . 2 0 0 8 . D i f f u s i o n
curves: a vector representation for smooth-shaded images. ACM
Trans. Graph. 27, 3 ,92:1-92:8 .

SELINGER, P.. 2003. Potrace: a polygon-based tracing algorithm.
http://potrace.sourceforge.net.

STEPIN, M., 2003. Hqx. h t t p : / / w e b . a r c h i v e . o r g / w e b /
2 0 0 7 0 7 1 7 0 6 4 8 3 9 / w w w . h i e n d 3 d . c o m / h q 4 x . h t m l .

UNKNOWN, 1997. Eagle, h t t p : / / e v e r y t h i n g 2 . c o m /
i n d e x . p l ? n o d e _ i d = 1 8 5 9 4 5 3 .

VECTOR MAGIC, INC., 2010. Vector Magic, h t t p : / /
v e c t o r m a g i c . c o m .

WOLBERG, G. 1990. Digital Image Warping, l s t ed . IEEE Com-
puter Society Press, Los Alamitos, CA, USA.

X I A , T . , L I A O , B . , AND Y U , Y. 2 0 0 9 . P a t c h - b a s e d i m a g e v e c -
torization with automatic curvilinear feature alignment. ACM
Trans. Graph. 28, 5, 115:1-115:10.

FATTAL, R. 2007. Image upsampling via imposed edge statistics.
ACM Trans. Graph. 26, 3, 95:1-95:8.

http://www
http://en.wikipedia.org/wiki/Pixel_art_
http://scale2x
http://bob
http://potrace.sourceforge.net
http://web.archive.org/web/
http://www.hiend3d.com/hq4x.html
http://everything2.com/

