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Figure 1: Naive upsampling of pixel art images leads to unsatisfactory results. Our algorithm extracts a smooth, resolution-independent 
vector representation from the image, which is suitable for high-resolution display devices. (Input image © Nintendo Co., Ltd.). 

Abstract 

We describe a novel algorithm for extracting a resolution-
independent vector representation from pixel art images, which en-
ables magnifying the results by an arbitrary amount without im-
age degradation. Our algorithm resolves pixel-scale features in the 
input and converts them into regions with smoothly varying shad-
ing that are crisply separated by piecewise-smooth contour curves. 
In the original image, pixels are represented on a square pixel lat-
tice, where diagonal neighbors are only connected through a single 
point. This causes thin features to become visually disconnected 
under magnification by conventional means, and creates ambigui-
ties in the connectedness and separation of diagonal neighbors. The 
key to our algorithm is in resolving these ambiguities. This enables 
us to reshape the pixel cells so that neighboring pixels belonging 
to the same feature are connected through edges, thereby preserv-
ing the feature connectivity under magnification. We reduce pixel 
aliasing artifacts and improve smoothness by fitting spline curves 
to contours in the image and optimizing their control points. 
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1 Introduction 

Pixel art is a form of digital art where the details in the image are 
represented at the pixel level. The graphics in practically all com-
puter and video games before the mid-1990s consist mostly of pixel 
art. Other examples include icons in older desktop environments, 
as well as in small-screen devices, such as mobile phones. Because 
of the hardware constraints at the time, artists where forced to work 
with only a small indexed palette of colors and meticulously ar-
range every pixel by hand, rather than mechanically downscaling 

higher resolution artwork. For this reason, classical pixel art is usu-
ally marked by an economy of means, minimalism, and inherent 
modesty, which some say is lost in modern computer graphics. The 
best pixel art from the golden age of video games are masterpieces, 
many of which have become cultural icons that are instantly recog-
nized by a whole generation, e.g. "Space Invaders" or the 3-color 
Super Mario Bros, sprite. These video games continue to be en-
joyed today, thanks to numerous emulators that were developed to 
replace hardware that has long become extinct. 

In this paper, we examine an interesting challenge: is it possible to 
take a small sprite extracted from an old video game, or an entire 
output frame from an emulator, and convert it into a resolution-
independent vector representation? The fact that every pixel was 
manually placed causes pixel art to carry a maximum of expression 
and meaning per pixel. This allows us to infer enough information 
from the sprites to produce vector art that is suitable even for signifi-
cant magnification. While the quantized nature of pixel art provides 
for a certain aesthetic in its own right, we believe that our method 
produces compelling vector art that manages to capture some of the 
charm of the original (see Figure 1). 

Previous vectorization techniques were designed for natural images 
and are based on segmentation and edge detection filters that do not 
resolve well the tiny features present in pixel art. These methods 
typically group many pixels into regions, and convert the regions' 
boundaries into smooth curves. However, in pixel art, every single 
pixel can be a feature on its own or carry important meaning. As a 
result, previous vectorization algorithms typically suffer from detail 
loss when applied to pixel art inputs (see Figure 2). 

A number of specialized pixel art upscaling methods have been de-
veloped in the previous decade, which we review in the next section. 
These techniques are often able to produce commendable results. 
However, due to their local nature, the results suffer from staircas-
ing artifacts, and the algorithms are often unable to correctly resolve 
locally-ambiguous pixel configurations. Furthermore, the magnifi-
cation factor in all these methods is fixed to 2x, 3x, o r 4 x . 

In this work, we introduce a novel approach that is well suited for 
pixel art graphics with features at the scale of a single pixel. We 
first resolve all separation/connectedness ambiguities of the origi-
nal pixel grid, and then reshape the pixel cells, such that connected 
neighboring pixels (whether in cardinal or diagonal direction) share 
an edge. We then fit spline curves to visually significant edges and 
optimize their control points to maximize smoothness and reduce 
staircasing artifacts. The resulting vector representation can be ren-
dered at any resolution. 
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Figure 2: Results achieved with representatives of different categories of algorithms. Compare these results to ours shown in Figure 1. 

We successfully applied our algorithm to an extensive set of pixel 
art images extracted from vintage video games and desktop icons, 
as well as to complete frames produced by a Super Nintendo emu-
lator. We compare our results to various alternative upscaling meth-
ods, ranging from vectorization to general and pixel-art-specialized 
image upscaling methods. In addition to the examples included in 
this paper, all of our results and comparisons are included in the 
supplementary material to this paper. 

2 Previous Work 
The previous work related to our paper can be classified into three 
categories. In Figures 2 and 9, and, more extensively, in the supple-
mentary materials, we compare our algorithm to various represen-
tatives from each category. 

General Image Upsampling 

The "classical" approach to image upsampling is to apply linear fil-
ters derived either from analytical interpolation or from signal pro-
cessing theory. Examples include filters such as Nearest-Neighbor, 
Bicubic, and Lancosz [Wolberg 1990]. These filters make no as-
sumptions about the underlying data, other than that it is essentially 
band-limited. As a consequence, images upsampled in this manner 
typically suffer from blurring of sharp edges and ringing artifacts. 

In the last decade, many sophisticated algorithms have appeared 
which make stronger assumptions about the image, e.g., assum-
ing natural image statistics [Fattal 2007] or self-similarity [Glasner 
et al. 2009]. A comprehensive review of all these methods is well 
beyond the scope of this paper. However, in most cases, these (nat-
ural) image assumptions do not hold for color-quantized, tiny pixel 
art images. For this reason, these methods tend to perform poorly 
on such inputs. 

Pixel Art Upscaling Techniques 

A number of specialized pixel art upscaling algorithms have been 
developed over the years. Most of these have their origins in the em-
ulation community. None has been published in a scientific venue; 
however, open source implementations are available for most. All 
of these algorithms are pixel-based and upscale the image by a fixed 
integer factor. 

The first algorithm of this type that we are aware of is EPX [John-
ston 1992|, which was developed to port Lucas Arts games to early 
color Macintosh computers, which had then about double the res-
olution than the original platform. The algorithm doubles the res-
olution of an image using a simple logic: every pixel is initially 
replaced by 2 x 2 block of the same color; however, if the left and 
upper neighbors in the original image had the same color, that color 
would replace the top left pixel in the 2 x 2 block, and analogously 
for the other corners. 

The algorithm is simple enough to be applied in real-time and often 
achieves good results. However, the direction of edges is quan-
tized to only 12 distinct directions which can cause the results to 
appear blocky. Another limitation is in the strict local nature of 

the algorithm which prevents it from correctly resolving ambigu-
ous connectedness of diagonal pixels. Both of these limitations are 
demonstrated in Figure 9 (bottom right). 

Several later algorithms are based on the same idea, but use more 
sophisticated logic to determine the colors of the 2 x 2 block. The 
best known ones are Eagle (Unknown 19971, 2xSaI [Ohannessian 
1999|, and Scale2x [Mazzoleni 2001), which use larger causal 
neighborhoods and blend colors. Several slightly different imple-
mentations exist under different names, such as SuperEagle and Su-
per2xSaI. An inherent limitation of all these algorithms is that they 
only allow upscaling by a factor of two. Larger magnification can 
be achieved by applying the algorithm multiple times, each time 
doubling the resolution. This strategy, however, significantly re-
duces quality at larger upscaling factors, because the methods as-
sume non-antialiased input, while producing antialiased output. 

The latest and most sophisticated evolution of this type of algo-
rithms is the hqx family [Stcpin 2003]. This algorithm examines 
3 x 3 pixel blocks at a time and compares the center pixel to its 8 
neighbors. Each neighbor is classified as being either similar or dis-
similar in color, which leads to 256 possible combinations. The al-
gorithm uses a lookup table to apply a custom interpolation scheme 
for each combination. This enables it to produce various shapes, 
such as sharp corners, etc. The quality of the results is high. How-
ever, due to its strictly local nature, the algorithm cannot resolve 
certain ambiguous patterns and is still prone to produce staircasing 
artifacts. Lookup tables exist only for 2x, 3x, and 4x magnification 
factors. 

Image Vectorization 

A large body of work deals with the automatic extraction of vector 
representations from images. These methods share a similar goal 
with our algorithm. However, most are designed with larger natural 
images in mind. At their core, vectorization methods rely on seg-
mentation or edge detection algorithms to cluster many pixels into 
larger regions, to which vector curves and region primitives are fit. 
These clustering tools do not perform well on pixel art images, be-
cause features are tiny, all edges are step edges, and there are no 
gradients that can be followed downhill. For these reasons, all al-
gorithms examined in this section tend to lose the small features 
characteristic to pixel art. 

Another challenge for these algorithms is dealing with 8-connected 
pixels; many pixel art images contain thin features that are only 
connected through pixel corners. General image vectorization tools 
are not designed to handle this situation and the ambiguities that 
arise from it and consequently tend to break the connectivity of 
these features. Below, we mention only a few representative vec-
torization approaches. 

Selinger [2003] describes an algorithm dubbed Potrace for trac-
ing binary images and presents results on very tiny images. This 
method, however, cannot handle color images. These have to 
be quantized and decomposed into separate binary channels first, 
which are then traced separately. This results in inter-penetrating 
shapes. 



Figure 3: Overview of our algorithm. (a) Input Image (16 x 16 pixels), (b) Initial similarity graph with crossing edges. The blue edges lie 
inside fiat shaded regions, so they can be safely removed. In case of the red lines, removing one or the other changes the result, (c) Crossing 
edges resolved, (d) Reshaped pixel cells reflecting the connections in the resolved similarity graph, (e) Splines fit to visible edges, ( f ) Final 
result with splines optimized to reduce staircasing (Image © Nintendo Co., Ltd.). 

Lecot and Levy [2006] present a system ("ARDECO") for vector-
izing raster images. Their algorithm computes a set of vector prim-
itives and first- or second-order gradients that best approximates 
the image. This decomposition is based on a segmentation algo-
rithm, which is unlikely to work satisfactorily on pixel art images. 
Lai et al. [2009] present an algorithm for automatic extraction of 
gradient meshes from raster images. This algorithm also relies on 
segmentation and is for the same reason unlikely to perform well 
on pixel art images. 

Orzan et al. [2008] introduce image partitioning diffusion curves, 
which diffuse different colors on both sides of the curve. In their 
work, they also describe an algorithm for automatically extracting 
this representation from a raster image. Their formulation, how-
ever, relies on Canny edge detection. These filters do not work well 
on pixel art input, most likely due to the small image size, since 
edge detectors have a finite support. Xia et al. [2009] describe a 
technique that operates on a pixel level triangulation of the raster 
image. However, it also relies on Canny edge detection. 

Various commercial tools, such as Adobe Live Trace [Adobe, Inc. 
2010| and Vector Magic (Vector Magic, Inc. 2010|, perform auto-
matic vectorization of raster images. The exact nature of the under-
lying algorithms is not disclosed, however, they generally do not 
perform well on pixel art images, as is evidenced by the compar-
isons in this paper and in our supplementary material. 

3 Algorithm 
Our goal in this work is to convert pixel art images to a resolution-
independent vector representation, where regions with smoothly 
varying shading are crisply separated by piecewise-smooth contour 
curves. While this is also the goal of general image vectorization 
algorithms, the unique nature of pixel art images poses some non-
trivial challenges: 

1. Every pixel matters. For example, a single pixel whose color 
is sufficiently different from its surrounding neighborhood is 
typically a feature that must be preserved (e.g., a character's 
eye). 

2. Pixel-wide 8-connected lines and curves, such as the black 
outline of the ghost in Figure 3a. These features appear visu-
ally connected at the original small scale, but become visually 
disconnected under magnification. 

3. Locally ambiguous configurations: for example, when con-
sidering a 2x2 checkerboard pattern with two different colors, 
it is unclear which of the two diagonals should be connected 
as part of a continuous feature line (see the mouth and the ear 
of the ghost in Figure 3a). This problem has been studied in 
the context of foreground / background separation in binary 
images, and simple solutions have been proposed [Kong and 

Rosenfeld 1996]. The challenge, however, is more intricate in 
the presence of multiple colors. 

4. The jaggies in pixel art are of a large scale compared to the 
size of the image, making it difficult to distinguish between 
features and pixelization artifacts. For example, in Figure 3a, 
how does one know that the mouth should remain wiggly, 
while the ghost outline should become smooth? 

3.1 Overview 

The main primitive in our vector representation are quadratic B-
spline curves, which define the piecewise smooth contours between 
regions. Once the curves are computed, an image can be rendered 
using standard tools [Nehab and Hoppe 2008; Jeschke et al. 20091. 
Thus, our main computational task is to determine the location and 
the precise geometry of these contours. Similarly to other vector-
ization algorithms, this boils down to detecting the edges in the 
input pixel art image and fitting curves of the proper shape to them. 
However, this process is complicated by the reasons listed earlier. 

Because of the small scale of pixel art images and the use of a lim-
ited color palette, localizing the edges is typically easy: any two ad-
jacent pixels with sufficiently different colors should be separated 
by a contour in the vectorized result. However, the challenge lies in 
connecting these edge segments together, while correctly handling 
8-connected pixels and resolving local ambiguities. 

Consider a square lattice graph with (w + 1) x (h + 1) nodes, rep-
resenting a w x h image. Each pixel corresponds to a closed cell 
in this graph. Horizontal and vertical neighbor cells share an edge 
in this graph, while diagonal neighbors share only a vertex. These 
diagonal neighbors become visually disconnected when the lattice 
is magnified, while the neighbors that share an edge remain visu-
ally connected. Thus, the first step of our approach is to reshape the 
original square pixel cells so that every pair of neighboring pixels 
along a thin feature, which should remain connected in the vec-
torized result, correspond to cells that share an edge. In this pro-
cess, described in Section 3.2, we employ a few carefully designed 
heuristics to resolve locally ambiguous diagonal configurations. 

Having reshaped the graph, we identify edges where the meeting 
pixels have significantly different colors. We refer to these edges as 
visible because they form the basis for the visible contours in our 
final vector representation, whereas the remaining edges will not be 
directly visible as they will lie within smoothly shaded regions. To 
produce smooth contours, we fit quadratic B-spline curves to se-
quences of visible edges, as described in Section 3.3. However, be-
cause the locations of the curve control points are highly quantized 
due to the low-resolution underlying pixel grid, the results might 
still exhibit staircasing. We therefore optimize the curve shapes 
to reduce the staircasing effects, while preserving intentional high-
curvature features along each contour, as described in Section 3.4. 



(a) Sparse pixels heuristic (b) Islands heuristic 

Figure 4: Heuristics for resolving crossing edges in the similarity 
graph: Curves: not shown here, see Figure 3b. Sparse pixels: the 
magneto component is sparser than the green one. This heuristic 
supports keeping the magenta edge connected. Islands: In this 
case the heuristic supports keeping the magenta edge connected, 
because otherwise a single pixel "" "island" would be created. 

three simple heuristics that, combined, properly resolve the con-
nectivity issue in a surprisingly large number of cases, as evidenced 
by the large number of examples in our supplementary material. 
We compute an associated weight for each heuristic, and in the end 
choose to keep the connection that has aggregated the most weight. 
In case of a tie, both connections are removed. These heuristics are 
explained below: 

Curves If two pixels are part of a long curve feature, they should 
be connected. A curve is a sequence of edges in the similarity 
graph that only connects valence-2 nodes (i.e., it does not con-
tain junctions). We compute the length of the two curves that 
each of the diagonals is part of. The shortest possible length 
is 1, if neither end of the diagonal has valence of 2. This 
heuristic votes for keeping the longer curve of the two con-
nected, with the weight of the vote defined as the difference 
between the curve lengths. Figure 3b shows two examples for 
this heuristic: the black pixels are part of a curve of length 7, 
whereas the white pixels are not part of a curve (i.e., length 1). 
Therefore, the heuristic votes for connecting the black pixels 
with a weight of 6. 

Finally, we render an image by interpolating colors using radial ba-
sis functions. This is done in an edge-aware manner, so that the 
influence of each pixel color does not propagate across the contour 
lines. 

3.2 Reshaping the pixel cells 

The goal of this first stage is to reshape the pixel cells, so that neigh-
boring pixels that have similar colors and belong to the same feature 
share an edge. To determine which pixels should be connected in 
this way, we create a similarity graph with a node for each pixel. 
Initially, each node is connected to all eight of its neighbors. Next, 
we remove from this graph all of the edges that connect pixels with 
dissimilar colors. Following the criteria used in the hqx algorithm 
[Stepin 20031, we compare the YUV channels of the connected pix-
els, and consider them to be dissimilar if the difference in Y, U, V 

Figure 3b shows the similarity graph that was processed in this 
manner. This graph typically contains many crossing diagonal con-
nections. Our goal is now to eliminate all of these edge crossing 
in order to make the graph planar (Figure 3c). The dual of the re-
sulting planar graph will have the desired property of connected 
neighboring pixel cells sharing an edge (Figure 3d). 

We distinguish between two cases: 

1. If a 2 x 2 block is fully connected, it is part of a continuously 
shaded region. In this case the two diagonal connections can 
be safely removed without affecting the final result. Such con-
nections are shown in blue in Figure 3b. 

2. If a 2 x 2 block only contains diagonal connections, but no 
horizontal and vertical connections, it means that removing 
one connection or the other will affect the final result. In this 
case we have to carefully choose which of the connections to 
remove. Such connections are shown in red in Figure 3b. 

It is not possible to make this decision locally. If one only examines 
the 2 x 2 blocks with the red connections in Figure 3b, there is 
no way to determine whether the dark or the light pixels should 
remain connected. However, by examining a larger neighborhood 
it becomes apparent that the dark pixels form a long linear feature, 
and therefore should be connected, while the light pixels are part of 
the background. 

Determining which connections to keep is related to Gestalt laws, 
and essentially aims to emulate how a human would perceive the 
figure. This is a very difficult task; however, we have developed 

Sparse pixels in two-colored drawings, humans tend to perceive 
the sparser color as foreground and the other color as back-
ground. In this case we perceive the foreground pixels as con-
nected (e.g., think of a dotted pencil line). We turn this into 
a heuristic by measuring the size of the component connected 
to the diagonals. We only consider an 8 x 8 window centered 
around the diagonals in question. This heuristic votes for con-
necting the pixels with the smaller connected component. The 
weight is the difference between the sizes of the components. 
This case is illustrated in Figure 4a. 

Islands we attempt to avoid fragmentation of the figure into too 
many small components. Therefore, we avoid creating small 
disconnected islands. If one of the two diagonals has a 
valence-1 node, it means cutting this connection would cre-
ate a single disconnected pixel. We prefer this not to happen, 
and therefore vote for keeping this connection with a fixed 
weight, with an empirically determined value of 5. This case 
is illustrated in Figure 4b. 

Now that we have resolved the connec-
tivities in the similarity graph, the graph 
is planar, and we can proceed to extract-
ing the reshaped pixel cell graph. This 
can be done as follows: cut each edge 
in the similarity graph into two halves 
and assign each half to the node it is con-
nected to. Then, the reshaped cell graph 
can be computed as a generalized Voronoi diagram, where each 
Voronoi cell contains the points that are closest to the union of a 
node and its half-edges. We can further simplify this graph through 
collapse of all valence-2 nodes. The inset figure shows the gener-
alized Voronoi diagram corresponding to a simple similarity graph 
alongside its simplified version. Figure 3d shows the simplified 
Voronoi diagram for the similarity graph in Figure 3c. Note that the 
node positions are quantized in both dimensions to multiples of a 
quarter pixel. We will make use of this fact later when we match 
specific patterns in the graph. 

The shape of a Voronoi cell is fully determined by its local neigh-
borhood in the similarity graph. The possible distinct shapes are 
easy to enumerate, enabling an extremely efficient algorithm, which 
walks in scanline order over the similarity graph, matches specific 
edge configurations in a 3 x 3 block a time, and pastes together 
the corresponding cell templates. We directly compute the simpli-
fied Voronoi diagram in this manner, without constructing the exact 
one. 

Accurate Simplified 



Figure 5: Resolving T-junctions at the marked nodes. Spline curves 
are shown in yellow, (a) In this case the left edge is a shading edge, 
therefore the other two edges are combined into a single spline 
curve. (b) Here, three differently colored regions meet at a point. 
The edges which form the straightest angle are combined into a 
single spline. 

3.3 Extracting Spline Curves 

The reshaped cell graph resolves all connectivity issues and en-
codes the rough shape of the object. However, it contains sharp 
corners and may look "blocky" due to the quantized locations of 
the nodes. We resolve these issues by identifying the visible edges, 
where significantly different colors meet. Connected sequences of 
visible edges that contain only valence-2 nodes are converted into 
quadratic B-spline curves |de Boor 19781- Here, we only count vis-
ible edges to determine the valence of a node. The control points of 
the B-splines are initialized to the node locations. 

When three splines end at a single common node, we can choose to 
smoothly connect two of the splines into one, creating a T-junction. 
This is preferable because it leads to a simpler and smoother figure. 
The question is: which two out of three splines to connect? 

We first categorize each of the three visible edges meeting at the 
node as either a shading edge or a contour edge. Shading edges 
separate cells that have similar colors (which were nevertheless 
considered different enough to classify the edge as visible to begin 
with). Contour edges separate cells with strongly dissimilar colors. 
Specifically, in our implementation we classify an edge as a shad-
ing edge if the two cells have a YUV distance of at most 100/255. Now, 
if at a 3-way junction we have one shading edge and two contour 
edges, we always choose to connect the contour edges. This situa-
tion is demonstrated in Figure 5a. If this heuristic does not resolve 
the situation, we simply measure the angles between the edges and 
connect the pair with the angle closest to 180 degrees. This situa-
tion is shown in Figure 5b. 

One minor issue arises from the fact that B-spline curves are only 
approximating their control points, but do not interpolate them in 
general. For this reason, we have to adjust the endpoint of a curve 
that ends at a T-junction to properly lie on the curve that continues 
through the T-junction. 

3.4 Optimizing the Curves 

Fitting B-spline curves greatly improves the smoothness of our re-
sults; however, they still suffer from staircasing artifacts (Figure 
6b). Therefore, we further improve the smoothness of the curves 
by optimizing the locations of their control points. The optimiza-
tion seeks the minimum of a sum of per-node energy terms: 

(a) Input ( 1 3 X 1 5 p ixe l s ) (b ) S p l i n e s In i t ia l ized (c) S p l i n e s O p t i m i z e d 

Figure 6: Removing staircasing artifacts by minimizing spline cur-
vature. 

Figure 7: Corner patterns our algorithm detects. The original 
square pixel grid is shown in gray. Detecting these patterns is 
straight forward because node locations are quantized to multiples 
of a quarter pixel in both dimensions due to the graph construction. 

where pi is the location of the i-th node. The energy of a node is 
defined as the sum of smoothness and positional terms: 

The two terms have equal contribution to the energy. Smoothness 
is measured as the absence of curvature. Therefore, we define the 
smoothness energy as 

where r ( i ) is the region of the curve that is influenced by pi, and 
k(s) is the curvature at point s. We compute the integral numeri-

cally by sampling the curve at fixed intervals. 

In order to prevent objects from changing too much, we need to 
further constrain the positions of the control points. We define a 
positional energy term as follows: 

where, ^pi is the initial location of the i-th node. Raising the term 
to the fourth power allows nodes to move relatively freely within a 
small region around their original location while sharply penalizing 
larger deviations. 

Note that the energy function as defined above does not distinguish 
between staircasing artifacts and intentional sharp features, such as 
corners. In the former case, smoothing is desired, however, in the 
latter, it needs to be avoided. We correct this behavior by detecting 
sharp features in the model and excluding the regions around these 
features from the integration in Equation 3. Due to the quantized 
nature of the reshaped cell graph, sharp features can only take on a 
limited number of specific patterns, shown in Figure 7. Thus, we 
simply look for these patterns (including their rotations and reflec-
tions) in the reshaped cell graph. Having detected a pattern, we 
exclude the part of the spline curve between the nodes of the pat-
tern from the integration (3). Figure 8 shows the detected patterns 
on an example sprite and highlights the parts of the curve which arc 
excluded from the integration. 

While our energy function is non-linear, it defines a very smooth 
potential surface, and therefore can be optimized using a simple 



(b) Without corner detection (c) With corner detection 

Figure 8: Corner detection: (a) Nodes that belong to a detected 
comer pattern are shown in red. The curve segments excluded from 
the evaluation of the smoothness term are highlighted in black. 

pies included in the supplementary material, computed on a single 
core of a 2.4 GHz CPU: 

Median Average Min Max 
Similarity Graph Construction 0.01s 0.01s 0.00s 0.07s 
Spline Extraction 0.02s 0.07s 0.00s 1.95s 
Spline Optimization 0.60 s 0.71s 0.01s 1.93s 
Total 0.62s 0.79s 0.01s 3.06s 

While our current focus was not on achieving real-time speed, we 
were still interested in how our algorithm would perform on ani-
mated inputs, e.g. in a video game. For this experiment, we dumped 
frames from a video game emulator to disk and applied our tech-
nique to the full frames. The two stages of our algorithm that are 
most critical for temporal coherency are the decisions made when 
connecting pixels in the similarity graph and the node location op-
timization. On the sequences we tried, our heuristics performed 
robustly in the sense that they made similar decisions on sprite fea-
tures, even when they changed slightly throughout the animation 
phases. In the optimization, the node locations are actually quite 
constrained due to the large power in the positional energy term. 
For this reason, our results can never deviate much from the input 
and are therefore as temporally consistent as the input. Figure 10 
shows a video game frame upscaled using our method. In the sup-
plementary materials, we provide high resolution videos for a long 
sequence and compare these to other techniques. 

relaxation procedure. At each iteration, we do a random walk over 
the nodes and optimize each one locally. For each node, we try 
several random new offset positions within a small radius around its 
current location, and keep the one that minimizes the node's energy 
term. 

After optimizing the locations of the spline nodes, the shape of the 
pixel cells around the splines might have changed significantly. We 
therefore compute new locations for all nodes that were not con-
strained in the optimization described above (and do not lie on the 
boundary of the image) using harmonic maps [Eck et al. 1995]. 
This method minimizes the cell distortion, and boils down to solv-
ing a simple sparse linear system (sec Hormann [2001 ] for the exact 
form and simple explanation). 

3.5 Rendering 

Our vector representation can be rendered using standard vector 
graphics rendering techniques, e.g. the system described by Nchab 
and Hoppc [2008]. Diffusion solvers can also be used to render 
the vectors. Here, one would place color diffusion sources at the 
centroids of the cells and prevent diffusion across spline curves. 
Jeschke et al. 120091 describe a system that can render such diffu-
sion systems in real time. The results in this paper were rendered 
using a slow but simple implementation, where we place truncated 
Gaussian influence functions (o = 1, radius 2 pixels) at the cell 
centroids and set their support to zero outside the region visible 
from the cell centroid. The final color at a point is computed as the 
weighted average of all pixel colors according to their respective 
influence. 

4 Results 

We applied our algorithm to a wide variety of inputs from video 
games and other software. Figure 9 shows representative results of 
our algorithm and compares them to various alternative upscaling 
techniques. In the supplementary materials, we provide an exten-
sive set of additional results and comparisons. 

The performance of our algorithm depends on the size and the num-
ber of curves extracted from the input. While we did not invest 
much time into optimizing our algorithm, it already performs quite 
well. The following table summarizes the timings for the 54 exam-

4.1 Limitations 

Our algorithm is designed specifically for hand-crafted pixel art im-
ages. Starting in the mid-nineties, video game consoles and com-
puters were able to display more than just a handful of colors. On 
these systems, designers would start from high resolution multi-
color images, or even photos, and then downsample them to the 
actual in-game resolution. This results in very anti-aliased sprites, 
which are in some sense closer to natural images than to the type 
of input our algorithm was designed for. The hard edges that we 
produce do not always seem suitable for representing such figures. 
Figure 11 shows an example of a sprite that was designed in this 
manner. 

Another limitation is that our splines sometimes smooth certain fea-
tures too much, e.g. the corners of the "386" chip in Figure 9. Our 
corner detection patterns are based on heuristics and might not al-
ways agree with human perception. One possible future extension 
is to allow increasing the multiplicity of the B-spline knot vector 
to create sharp features in the vector representation, for example in 
places where long straight lines meet at an angle. 

While many of our inputs use some form of anti-aliasing around 
edges, we have not experimented with pixel art that use strong 
dithering patterns, such as checker board patterns, to create the 
impression of additional shades. Our algorithm might need to be 
adapted to handle such inputs well. 

5 Conclusions 
We have presented an algorithm for extracting a resolution-
independent vector representation from pixel art images. Our algo-
rithm resolves separation/connectedness ambiguities in the square 
pixel lattice and then reshapes the pixel cells so that both cardinal 
and diagonal neighbors of a pixel are connected through edges. We 
extract regions with smoothly varying shading and separate them 
crisply through piccewise smooth contour curves. We have demon-
strated that conventional image upsampling and vectorization al-
gorithms cannot handle pixel art images well, while our algorithm 
produces good results on a wide variety of inputs. 

There are many avenues for future work. Obviously, it would be 
nice to optimize the performance of the algorithm so that it can be 
applied in real-time in an emulator. Some of the ideas presented in 



Figure 9: Some results created with algorithm and comparison to various competing techniques. Please zoom into the PDF to see details, 
and see the supplementary materials for a large number of additional results and comparisons (Images: Keyboard, 386 © Microsoft Corp.; 
Help, Yoshi, Toad © Nintendo Co., Ltd.; Bomberman © Hudson Soft Co., Ltd.; Axe Battler © Sega Corp.; Invaders © Taito Corp.). 



Figure 10: Applying pixel art upscaling in a dynamic setting. The output frame of an emulator is magnified by 4x (crop shown). Please zoom 
into the PDF to see details (Image © Nintendo Co., Ltd.). 

Input ( 2 4 x 2 9 pixels) Our Result 

Figure 11: A less successful case. Ann-aliased inputs are difficult 
to handle for our algorithm. "We are doomed..." (Image © id 
Software) 

this work can potentially benefit general image vectorization tech-
niques. Another interesting direction would be to improve the han-
dling of anti-aliased input images. This might by done by render-
ing some curves as soft edges rather than sharp contours. A whole 
new interesting topic would be to look into temporal upsampling 
of animated pixel art images. If we magnify from a tiny input to 
HD resolution, locations are quite quantized which might result in 
" jumpy" animations. Since many modern display devices are oper-
ating at a much higher refresh rate than earlier hardware, one could 
improve the animations by generating intermediate frames. 
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